Mobilitie brings interim Wi-Fi to L.A. Coliseum

The Los Angeles Coliseum is home to the NFL’s Rams and the University of Southern California. Credit all photos: Terry Sweeney, MSR (click on any photo for a larger image)

Previously reliant solely on DAS coverage, the Los Angeles Coliseum added Wi-Fi coverage last November in the student section – about 7,500 seats on the bowl’s east side – thanks to a donation of equipment and labor by Mobilitie.

The wireless services provider is also in the process of adding Wi-Fi to two sets of club suites — behind the southern end-zone and on the deck of the Coliseum’s iconic peristyle. These are used by fans of the Los Angeles Rams, the recently relocated NFL franchise playing its second season in the City of Angels. The Rams’ new $2.6 billion stadium is under construction in nearby Inglewood, projected to be done in 2019 and ready for the 2020 NFL season.

In addition to the Rams, the Coliseum is also home field for the University of Southern California’s football team. It’s also slated to be the stadium for the 2028 Summer Olympics, playing host to the world’s athletes for an unprecedented third time.

More renovations coming soon

Editor’s note: This profile is an excerpt from our latest STADIUM TECH REPORT, our Fall 2017 issue that has in-depth profiles of network deployments at Notre Dame Stadium, Colorado State’s new stadium, and the Atlanta Falcons’ new Mercedes-Benz Stadium. DOWNLOAD YOUR FREE COPY of the report today!

Mobilitie’s generosity notwithstanding, all the fan-facing Wi-Fi at the Coliseum is temporary, according to Derek Thatcher, an IT manager for USC, which manages the Coliseum on behalf of the County of Los Angeles. Demolition at the stadium will get underway in January 2018; while much of the bowl’s structure will remain, permanent club suites will be added as will new seating and new aisles with handrails. That will translate to a reduction in bowl capacity from 94,000 to 77,500, according to USC.

Close-up of the under-seat Wi-Fi APs

The $270 million refresh was already underway before LA’s eleventh-hour entry in the Olympics sweepstakes, activated after Boston voted down a bid. The U.S. Olympic Committee has earmarked $175 million for other upgrades at the Coliseum for the quadrennial gathering of the world’s athletes – and broadcasters.

A surprise part of LA’s Olympic bid was a proposal for simultaneous opening ceremonies at two venues, Thatcher explained. Under the USOC’s plan, the visual and logistical extravaganza could be split between the Coliseum and the gleaming new NFL stadium that the Rams will share with the Los Angeles Chargers (formerly of San Diego). Though the Games are more than 10 years away, it’s unclear how the use of two venues would work logistically. But the potential wow factor of such a spectacle is undeniable.

In the meantime, Thatcher, many of his USC counterparts and busloads of subcontractors will have their hands full once the current NFL season ends early next year. Fan-facing Wi-Fi is part of the plan for the Coliseum refresh; no word on which vendors are in the running or when the university will award the Wi-Fi contract.

Another look at the under-seat AP deployment

Gaining insight for the future

The USC Trojan faithful and Rams fans at the Coliseum had been reliant on DAS from AT&T, T-Mobile and Verizon Wireless. But Wi-Fi coverage is envisioned from the gates to the concourses and bowl. The Coliseum Wi-Fi will not extend to adjacent parking lots, which are owned by the State of California, not USC, Thatcher added.

And though the equipment and service contract hasn’t been awarded yet, Mobilitie made a smart move with the interim gear it donated – Wi-Fi access points all made by Aruba (now owned by HP Enterprise), the same Wi-Fi gear in use across the rest of USC’s campus. The donated network also gives Mobilitie insight to usage patterns, user habits and engineering challenges that are unique to the venue.

The Coliseum’s renovation is projected to be done by August 2019, though the facility will be useable for home games played by both USC and the Rams in the interim, according to Thatcher.

In the meantime, 166 Aruba APs will power fan-facing Wi-Fi at the Coliseum. Mobilitie installed under-seat APs; rather than drill new conduits or use saw-cuts through stadium concrete, the service provider used low-profile rubber matting to conceal the wiring. Many of the APs are also installed on angled concrete, which helps preserve storage space beneath the seats, a plus for fans and their sacks and packs.

Alamodome taps AmpThink for new Wi-Fi ahead of 2018 Final Four

A new full-stadium Wi-Fi network installed by AmpThink is coming to the Alamodome, scheduled to be finished just ahead of this year’s Alamo Bowl and well in place for next spring’s men’s NCAA basketball tournament’s Final Four, Alamodome executives said.

Scheduled to be announced publicly by the San Antonio, Texas, venue today, the new network is part of a $50-million-plus renovation project that includes updated video boards, sound systems and TV screens throughout the stadium. Nicholas Langella, general manager of the Alamodome, said the new Wi-Fi network was financed in part by donations from Alamodome customers, including the Valero Alamo Bowl, scheduled this year for Dec. 28. The network will use Wi-Fi gear from Cisco, according to Langella.

According to Langella, approximately $6 million out of the roughly $10 million needed for the Wi-Fi upgrade came from the Alamo Bowl. Langella also said that the venue now has an updated DAS as well, built by Verizon, which will also have AT&T and T-Mobile on board. “We’re very happy about that [the DAS],” said Langella in a phone interview.

Going under seat for Wi-Fi

Though Wi-Fi deployment firm AmpThink has lately preferred railing Wi-Fi enclosures for proximate network builds, such as at Notre Dame, Langella said the Alamodome deployment will use more under-seat AP placements than railings, given the designed mobility of the Alamodome seating areas. “We have so much mobility with the stands, it’s hard to do lots of railing [placements],” Langella said.

According to Langella when the Wi-Fi deployment is finished — the network is scheduled to be fully completed by Dec. 1 — there will be approximately 750 APs installed, allowing the Alamodome to increase coverage from being able to serve 3,500 fans to being able to cover 65,000 fans, meaning every seat in the house. The improvements, he said, were part of a plan to attract the Final Four, which succeeded.

“We always thought we would improve the Wi-Fi,” Langella said. With the Final Four looming, he said, “we took the bull by the horns and got it done.”

First Look: Shining start for Notre Dame’s stadium renovations, new Wi-Fi network

Notre Dame logo on Wi-Fi railing enclosure at Notre Dame Stadium. Credit all photos: Paul Kapustka, MSR (click on any photo for a larger image)

How do you bring new technology into a building and institution that embraces history as an integral part of its brand? There may be many answers but in the sports stadium world, Notre Dame’s renovation of its hallowed football field and the addition of high-speed Wi-Fi look like a good example for any other venues trying to solve the same issues.

At this past Sunday’s “New and Gold” game, a sort of glorified scrimmage, the public (including Mobile Sports Report) got its first look at the University of Notre Dame’s Campus Crossroads project, a $400-million plus effort to bring premium seating, a large video board and high-density Wi-Fi to a venue that came to life in 1930, according to university history.

While we will have a full report on our visit to Notre Dame Stadium in our upcoming Fall STADIUM TECH REPORT issue, we wanted to give you a “first look” at the new facilities, which basically include three new large buildings built into the sides of the existing structure, to provide support for the video board as well as two expanded premium-seating and press box areas on either side of the field.

Wi-Fi AP overlooks a concession stand

One of the coolest parts we saw were the new rooftop premium seating areas, where you can sit on a couch and see the full field while also peering out over the edge of the stadium to see Touchdown Jesus, the Golden Dome, and the rest of the world (well, OK, mostly South Bend, Indiana) while enjoying your favorite beverage and speedy Wi-Fi.

The new Wi-Fi network design using Cisco gear was led by AmpThink, and includes custom-designed enclosures for railing-mounted APs that feature a sharp version of the “ND” logo known to any football fan. Though the network hasn’t yet been optimized or tested with a full house of fans, we were still getting solid up/down signals in the 60-70 Mbps range throughout the building, even in low and high bowl seating areas. There is also a new neutral-host DAS in the stadium, built by Crown Castle. According to Notre Dame, Verizon Wireless and AT&T will be live on the cellular network by the start of the season, with T-Mobile to follow soon.

Like we said, look for more details in our upcoming report… but for now enjoy some scenes from Sunday’s game!

A good look across the main east seating section, with Wi-Fi handrail enclosures visible

DAS in the grass: A DAS antenna finds a home in the grassy strip separating seats from the field

The new big screen video board now dominates the south end zone

A good look at how the new structures bookend up to the stadium on its sides

Now that’s a premium suite: Rooftop couch area provides full view of field, plus scenic views over campus and beyond

Additional seating Wi-Fi coverage from small antennas over VOMs

Painted Wi-Fi AP blends in to column in main concourse outside seating area

The view of ‘Touchdown Jesus’ remains unobstructed

Inside look at the swanky, wood-paneled club for premium seatholders in west building

Scoreboard plug for the Wi-Fi

Notre Dame fans already figuring out how to use social media to get on the big screen

Smart fans at Notre Dame — early arrivers went right for the new, padded premium seats

How do you get bandwidth to APs located below grade level? By being clever and using routing down the side of stairways… more details on this trick coming soon!

Ready or not, Unlicensed LTE is here. What should your venue do?

The entry concourse at Atlanta’s new Mercedes-Benz Stadium. Credit all photos: Paul Kapustka, MSR (click on any photo for a larger image)

By Chuck Lukaszewski, Aruba Networks, a Hewlett Packard Enterprise company

There’s much excitement around the coming of “unlicensed LTE” and for good reason. In our anytime, anywhere world the last device many of us use at night, and the first one we pick up in the morning, is a mobile phone, tablet or computer. Although much of the time our devices connect via Wi-Fi, when we’re in transit we depend on cellular.

With consumers quick to express their disappointment when their apps fail to respond – or don’t respond fast enough – on a wireless network, cellular providers are keenly aware they must keep pace with rapidly escalating user experience expectations. Research suggests mobile data traffic will grow by 47 percent annually through 2021. Combine the two and the drivers for expanding network capacity are clear.

While the lure of more bandwidth can be attractive, stadium and venue operators need to carefully evaluate the technological impact and operational overhead unlicensed LTE introduces.

Gigabit cellular coming soon

Editor’s note: This post is part of Mobile Sports Report’s new Voices of the Industry feature, in which industry representatives submit articles, commentary or other information to share with the greater stadium technology marketplace. These are NOT paid advertisements, or infomercials. See our explanation of the feature to understand how it works.

To provide gigabit speeds, the cellular industry has enhanced LTE technology to bond multiple channels together, called “carrier aggregation.” Although originally designed only to combine different licensed frequencies, it has now been extended to aggregate licensed spectrum with 5 GHz unlicensed spectrum (where Wi-Fi operates). Two competing technologies for doing so have emerged, with notable differences when deploying in high-density environments like stadiums in the U.S.

LTE-U (LTE in the Unlicensed Spectrum) is a proprietary technology, developed by the LTE-U Forum, a consortium of several cellular-related companies. It enables simultaneous operation of LTE over both licensed and unlicensed spectrum by aggregating the bands together, resulting in a performance boost. However, the way LTE-U takes control of a channel – while legal in the U.S. – is controversial and may significantly degrade performance of Wi-Fi equipment using the same channel. The Wi-Fi and cellular industries worked together to produce a coexistence test plan, but so far none of the test results for LTE-U equipment authorized by the FCC have been made public.

LAA (Licensed Assisted Access) can be thought of as the standardized version of unlicensed LTE, designed to meet European “listen-before-talk” (LBT) requirements, so it can be deployed anywhere on the planet. It was developed through the 3rd Generation Partnership Project (3GPP) worldwide standards organization, with wide participation including input from the Wi-Fi community.

DAS gear above concession stand at Coors Field

Think of LBT like the telephone party lines of yesteryear, where multiple customers share a communal phone line but only one person can use it at a time for their conversation while others wait. When there is no conversation happening on the party line and two or more people try to speak at once, other customers of the party line graciously “back off” to allow one person to go first. In cellular terms, this makes LAA a more “polite” technology than LTE-U, as it waits to transmit until a channel is clear. The back-off method it uses is compatible with Wi-Fi at least on paper, although 3GPP does not require vendors to perform or publish any kind of test results.

The Road Ahead

Of course what you want to know is how the advent of LTE-U/LAA impacts your stadium and whether to add gigabit cellular to the connectivity mix.

As a robust, stable and mature technology, Wi-Fi’s strength and ability to handle exceptional stadium data traffic loads is well established. To make informed decisions about whether to consider LTE-U/LAA technologies alongside Wi-Fi, here are five essential technical considerations.

Spectrum Availability. The unlicensed radio spectrum is comprised of 24 channels in the U.S., which is analogous to a 24-lane freeway. Until now, only Wi-Fi traffic traveled on that roadway, with many years spent developing technologies to ensure steady traffic flow, particularly in stadiums. Wi-Fi includes its own LBT solution, which helps assure data merges smoothly onto the freeway. It’s been proven at six Super Bowls plus countless other concerts and sporting events.

Most stadium Wi-Fi networks are already spectrum-constrained, meaning they are just managing to carry the existing load – much less new fan technologies like AR/VR. A large body of evidence demonstrates that stadiums and arenas need 20-24 fulltime-equivalent channels to make a 5 GHz system work (regardless of technology). These Wi-Fi networks are carefully optimized to eliminate all unnecessary transmissions.

Adding one or more LTE-U or LAA systems will reduce available capacity for Wi-Fi operations. As of this writing, there are no public technical measurements of deployed systems so the actual impact is unknown. If four separate unlicensed LTE networks are actually deployed, the impact will be even greater.

Number of LTE-U/LAA Networks Required. Visitors to your stadium likely utilize each of the four U.S. cellular operators: AT&T, Sprint, T-Mobile and Verizon. Therefore, to offer gigabit cellular connectivity, you’ll need to permit all four to deploy an LTE-U, or LAA, network. Because the technologies are so new, they lack a “neutral host” methodology, so each operator will require its own separate physical network and spectrum.

DAS gear under seating area at SunTrust Park

Compatibility with Existing DAS. Most stadiums and arenas have either separate antenna systems for each major cellular operator or a converged neutral-host DAS. Although LTE-U and LAA are intended to support “dual connectivity” to a separate macro base station (or “eNodeB”) on paper, the products currently being shipped are intended as co-located small cells that contain two paired LTE radios – one licensed and one unlicensed. Stadium operators should validate whether their DAS systems are compatible with an expansive LTE-U/LAA small cell deployment where the primary cell (or “PCell”) is the DAS and each PCell has dozens of secondary cells (or “SCells”) providing 5 GHz service.

Cost vs. Benefit. Of no small consideration is the added amount of equipment, and the costs, in a hybrid Wi-Fi/cellular situation. If every cellular operator requires a separate LAA/LTE-U overlay, this implies up to four full new sets of equipment must be deployed under seats or on handrails. For a 60,000-seat stadium at typical under-seat densities, it would only require about 850 Wi-Fi access points (APs). In contrast, for LAA/LTE-U stadium operators would need over 3,000 additional small cells– with each one requiring a sturdy waterproof housing, a 30-watt POE connection, Cat-6 cabling, conduit and, of course, a hole drilled in the concrete. Meaning, LTE-U/LAA small cell deployments would require essentially the same physical footprint for each carrier as Wi-Fi which is likely already installed and is inherently a neutral host technolgy.

Risk. It’s also critical to consider the corresponding risks of adding up to four cellular unlicensed LTE networks to your Wi-Fi environment. It took about seven years and three full generations of radio designs for Wi-Fi vendors to perfect high-capacity stadium systems whereas LTE-U/LAA equipment is only beginning to ship. In short, it may be wise to delay comingling Wi-Fi and LTE-U/LAA networks until unlicensed LTE equipment becomes proven in less mission-critical settings than your venue.

Chuck Lukaszewski is Vice President of Wireless Strategy & Standards at Aruba Networks, a Hewlett Packard Enterprise company. For over a decade he has engineered and deployed large-scale 802.11 networks, joining Aruba in 2007.

Chuck has built Wi-Fi systems in stadiums, seaports, rail yards, manufacturing plants and other complex RF environments, including serving as chief engineer for many stadiums ranging from 20,000 to 100,000 seats that provide live video and other online amenities. He is the author of six books and design guides including Very High Density 802.11ac Networks and Outdoor MIMO Wireless Networks.

T-Mobile steps up stadium DAS participation, ahead of 5G future

DAS gear at Kauffman Stadium. Credit: ADRF video

T-Mobile has stepped up its participation in stadium DAS deployments recently, ahead of what the wireless carrier sees as an eventual shift to 5G technologies sometime in the near future.

Recent news announcements of T-Mobile being the first carrier to participate in the new forthcoming distributed antenna system (DAS) at Wrigley Field, as well as joining DAS deployments at Texas A&M’s Kyle Field and Kansas City’s Kauffman Stadium are proof that T-Mobile is making up for lost ground in the stadium cellular deployment arena.

“It’s a catch-up play, to some degree,” said Dave Mayo, senior vice president of network technology at T-Mobile. While Mayo spent most of a recent phone interview with Mobile Sports Report talking about the promise of future 5G cellular technologies, he did acknowledge that T-Mobile was more aggressively pursuing DAS deals in the moment, to make sure T-Mobile customers could connect when they were at large public venues.

“When they get to the venue, customers expect to be able to post to Instagram and Facebook,” Mayo said. “It’s table stakes.”

In Chicago, the world champion Cubs are looking to 2018 for the arrival of their renovated Wi-Fi and DAS infrastructure. According to DAS deployer DAS Group Professionals, T-Mobile is the first of the cellular carriers to sign on to the neutral-host system.

At the Kansas City Royals’ Kauffman Stadium, the new DAS built by Advanced RF Technologies Inc. (ADRF) and Sprint in 2015 will welcome T-Mobile to the system this month, with AT&T and Verizon Wireless expected to join sometime later this year, according to ADRF. And earlier this year, Texas A&M announced a $3.5 million deal for T-Mobile to join the DAS at Texas A&M’s Kyle Field, which previously had AT&T and Verizon as participants.

Looking ahead to 5G

But even as T-Mobile announces its participation in traditional DAS deployment deals — where other carriers or third-party operators may be in charge — Mayo said venues need to rethink their cellular strategies for the coming of 5G, a still loosely-defined set of technologies that will nevertheless be much different than the current standard of 4G LTE.

“5G is going to become available in the next 2 to 3 years, so now is the time to start thinking about this,” Mayo said. With much different transmission frequencies in the millimeter wave zones, the idea is that 5G could theoretically support much higher data rates than current cellular technology. The one drawback of higher-range frequencies, that being shorter distance ranges for signals, may not be a big problem in stadiums since antennas are usually placed closer together than those in other environments.

How the DAS model will or will not translate to a 5G future is a topic already widely talked about in industry circles, and Mayo said current deployment agreements may not work well going forward.

“The whole [deployment] model has to change,” Mayo said. “And the time to start changing that is now.”

Wireless connectivity strong at Colorado Rockies’ ‘old’ Coors Field

The main gate at Coors Field, the third-oldest ballpark in the NL. Credit all photos: Paul Kapustka, MSR (click on any photo for a larger image)

For someone who covered the origin of major league baseball in Denver, it somehow doesn’t seem possible that Coors Field, home of the Colorado Rockies, is the third-oldest stadium in the National League. But after venerable venues Wrigley Field and Dodgers Stadium, there sits Coors as the next-oldest in line.

Opened in 1995, the brick-and-steel venue in Denver’s lower downtown has another oldest-type attribute, in the fact that Coors was one of the first MLB stadiums to get a Wi-Fi network built for it by MLB’s Advanced Media arm, a deployment that went fully live in time for the 2015 season. Like its bricks-and-mortar host, the “old” network is still doing fine, even if it was built without some of the newer technology and techniques that have appeared in stadium networking in the lifetime of the past couple years.

With an opening-day Wi-Fi data total of 2.2 terabytes used, Coors Field’s Wi-Fi network is more than ready and able to handle any increases in activity that may or may not be related to the Rockies’ resurgence on the field, where the purple players have spent most of the season so far in playoff contention.

During an early May visit, Mobile Sports Report found the network performing strong throughout the venue, with many 60+ Mbps readings for Wi-Fi download speeds in all seating areas as well as on heavy-traffic concourses. What follows here is some history of the park and its role in the MLBAM Wi-Fi rollout, as well as our random speedtests from a visit during a doubleheader with the defending World Series champion Chicago Cubs, whose well-traveled fans add to the capacity in any ballpark where the team happens to be playing.

One of the earliest in ‘downtown parks’ resurgence

Editor’s note: This profile is an excerpt from our latest STADIUM TECH REPORT, our Summer 2017 issue that has in-depth profiles of network deployments at the Atlanta Braves’ new SunTrust Park, new Wi-Fi for Westfield’s Century City Mall in Los Angeles, and a profile of a new Wi-Fi network at Red Bull Arena. DOWNLOAD YOUR FREE COPY of the report today!

The green box at the bottom of the aisle is a Wi-Fi antenna pointing up the rows.

A little personal history for yours truly intersects with the origin of Coors Field — way back in 1991, I was one of the lead baseball writers for the Boulder (Colo.) Daily Camera, and our main story that spring was the question of whether or not Denver would land one of the two NL expansion franchises soon to be awarded. Like many other cities and regions hopeful for pro sports, Denver and Colorado voted for a tax that would help build a new baseball-only park, which looked great in those artist-concept sketches that are always floated around.

But for me what really hit home was when the team behind Denver’s bid actually went out and chalked out a baseball field in the vacant lots where Coors Field would actually sit, among the old brick warehouses in the city’s lower downtown neighborhood. On the day of the official National League visit, there was even a group of kids playing baseball on that field — whether it was staged or not, the presentation was cool, and it probably stuck in the minds of many others like it did in mine, that a downtown park would be a great thing in Denver.

After being awarded the franchise and playing a couple years in the old Mile High football stadium, the Rockies finally moved into their new home for the 1995 season, in a building inspired by Orioles Park at Camden Yards, the downtown venue built for the Baltimore Orioles a few years earlier. My first impressions at the time were favorable, noting the wider concourses and seats tilted to the action on the field, along with a ballpark brewpub as being good trends for others to imitate.

Fast forward 20 years, and at Coors Field, lots has changed from the fan perspective. With personal digital devices everywhere, and fans wanting to use social media to share experiences, the home of the Rockies is no different from any other large sports or entertainment venue in needing solid connectivity. As perhaps befits the pro sport with the best digital league-wide plan, MLB’s advanced media arm (MLBAM) in 2014 embarked on a program to make Wi-Fi and DAS deployments happen in every stadium that didn’t have them (or had older. underperforming networks). By cutting deals with carriers and equipment suppliers and teams. MLBAM put together $300 million in the kitty for a buildout that reached 23 stadiums by this year’s ASG.

Some orderly DAS wiring coming out of the head end room.

(Some teams, like the San Francisco Giants at AT&T Park and the Atlanta Braves at new SunTrust Park, have opted to build their own physical networks, even while working closely with MLBAM on matters like the league-wide Ballpark app.)

Coors Field was among the very first in the MLBAM buildout efforts, with fan-facing Wi-Fi available in time for the 2015 season. Though its buildout predated some of the newer techniques and technologies used for stadium Wi-Fi deployments — like under-seat or handrail-mounted Wi-Fi APs — our tests showed the Coors Field Wi-Fi network, which now has approximately 550 APs, to be as strong as any we’ve tested, with signals in the 60 Mbps download range throughout most of the park. We didn’t test all the DAS carrriers but from all appearances, AT&T, Verizon and T-Mobile are well represented on the AT&T-built cellular network. According to AT&T there are 322 antennas in the newer version of the DAS, also built in 2015, which AT&T said has roughly six times the capacity of the previous network.

As the Rockies enjoy an on-field resurgence (Colorado was in or near first place in its division through most of the spring and remain in the wild-card hunt as of this writing), fans should be happy to know their connectivity is competitive as well, with both team IT types and MLBAM keeping an eye on keeping customers connected.

Deck locations help ‘front to back’ work well at Coors Field

With three main tiers of seating, the 50,398-seat Coors Field has plenty of overhangs to work with as antenna mounts, making the so-called “front to back” design philosophy work well. Michael Bush, senior director of information systems for the Rockies, led us on a tour of the stadium, noting that at the tops of most seating areas there were two antennas, one pointing straight down and a “Gillaroo” panel antenna pointing down the rows of seats.

Good camoflauge on antennas serving the left field bleachers area.

At the bottom of most seating areas, including close to field level, there are Wi-Fi APs mounted either on the playing-field walls, or on the railings in the upper decks, pointing back up the rows of seats. In section 131, right behind home plate, we got readings as high as 63.10 Mbps on download and 48.75 Mbps for upload, almost exactly halfway between field level and the concourse at the top of the lower bowl.

In row 16 of section 138, behind the Rockies’ dugout, we got a speedtest reading of 63.32 / 41.63 Mbps, and in the outfield seats behind the left-field foul pole we saw speeds of 68.29 / 49.66 Mbps. Up in the “Rockpile” seats, way up top in straightaway center, we still got a Wi-Fi mark of 66.69 / 41.44 Mbps, probably from one of the four antennas we saw mounted on the back-side railings.

In the back of the walk-around “Rooftop” club and bar area in the upper deck of right field we got speeds of 61.21 / 28.86 Mbps, and then marks of 61.52 / 40.53 Mbps when we moved around to the front of the Rooftop, where you can lean on a railing while watching the game below. The lowest marks we got were in the upper deck of section 317 along the first-base line, where the speeds were 42.16 / 25.33.

All of these tests came during a break between games during a doubleheader versus the Cubs, when the stadium was cleared between games. The marks also varied between being on the main Rockies fan Wi-Fi SSID, and one reserved for Verizon Wireless customers, which our device kept autoconnecting to. But even as the stadium filled up for the nightcap, our signals stayed strong, including a 67.62 / 29.78 Mbps mark up in section 342, in the upper deck along the third-base line.

On Verizon’s LTE network we got a reading in the left-field bleachers of 14.99 / 15.19 Mbps, and a reading of 11.26 / 7.69 Mbps up in front of “The Tavern,” one of the bars in the Rooftop area. We did not have devices to test cellular signals for AT&T or T-Mobile, both of which like Verizon are also on the stadium DAS. Sprint, according to Bush, serves its Coors Field customers with a macro antenna deployment on a rooftop across the street from the stadium along the first-base side.

Wi-Fi antennas in the back of the ‘Rockpile’ centerfield bleacher area.

In our tour of the venue, Bush led us down to the head end rooms, where the DAS deployment looked military in its precision and organization. He also pointed out the cooling vents, which went from field level through the ceilings to finally pop out above the concession stands on the main concourse level, out of view for anyone who wasn’t trying to look down to see them.

Though Coors Field’s lower level seemed to have more than enough room for head end rooms, Bush did show us the parking lot “shed” that MLBAM built to house its video operations, including the on-field replay system that shuttles signals back to league headquarters. There is also some Wi-Fi coverage outside the building, mainly in the north parking lot which doubles as an area for media tenting for large events like postseason games. But for the most part Bush said Coors Field is careful to limit its Wi-Fi footprint to the facility’s walls, so there isn’t any bleed-over use by the residential and commercial buildings that are just across the street from three sides of the stadium.

Making sure the tech fits the park

As one of the first MLBAM deployments, the Coors Field network might have been excused for being more functional than aesthetic, but as our visit showed the opposite is true. Unless you are explicitly looking for Wi-Fi and other networking gear, it’s hard to see with the naked eye. In our unofficial wanderings we’d put Coors Field among the best in terms of hiding things in plain sight, with exact paint color matches as well as finding locations for mounting where gear doesn’t stick out. Helping out with this task is Coors Field’s overall embrace of brick and exposed steel beams, a sort of benign camoflauge that the network deployment team made good use of.

“A huge part of the fight” was making the antennas and other gear disappear, Bush said, pointing out several deployment spots we otherwise might have missed (including a huge bank of DAS gear right above a concession stand, perfectly painted to blend in with the green structural steel right above).

“The owners wanted to make it look like it [the network] was always there from the start,” said Bush.

Editor’s note: This profile is an excerpt from our latest STADIUM TECH REPORT, our Summer 2017 issue that has in-depth profiles of network deployments at the Atlanta Braves’ new SunTrust Park, new Wi-Fi for Westfield’s Century City Mall in Los Angeles, and a profile of a new Wi-Fi network at Red Bull Arena. DOWNLOAD YOUR FREE COPY of the report today!

DAS gear hidden in plain sight above a concession stand

Cubs fans invaded the Rooftop, among other areas

A good look at the Rooftop area, with its open gathering spaces

A Wi-Fi AP pointing back up toward the seats from the field level wall

The view from center field

Coors Field’s beer stands were playing to the Cubs visitors with this offering

Let’s play two!

The pro pick for your after-Coors Field jazz consumption