Colorado brings Wi-Fi and DAS to Folsom Field

Folsom Field at night. Credit: University of Colorado (click on any picture for a larger image)

There will be a change in the air at Folsom Field this fall, and not just from the team that new head coach Mel Tucker will lead onto the gridiron. For the first time, the mile-high atmosphere inside the University of Colorado’s historic venue will be filled with fan-facing Wi-Fi and cellular signals, thanks to new networks being installed this offseason by third-party host Neutral Connect Networks (NCN).

In a deal that will also bring Wi-Fi and a cellular DAS to the school’s basketball arena, NCN will use Cisco gear for the Wi-Fi network and JMA Wireless gear for the cellular networks. A centrally located head-end will serve both venues via fiber connections, some run through existing tunnels from the campus’ old steam-heating infrastructure.

Due to be live before the 2019 football season begins on Sept. 7 when CU hosts Nebraska, the Wi-Fi network will use 550 APs in a mostly under-seat deployment at Folsom Field, where there are no overhangs over any of the seating areas. DAS deployment in Colorado’s historic football stadium — which first hosted games in 1924 — will use antennas pointing down from the stadium’s top edges, with some new flagpoles scheduled to help provide antenna-mounting locations.

While its incredibly picturesque location at the edge of the Rocky Mountains has historically made Folsom Field a fan-favorite place to visit (at least for photos), the lack of any comprehensive wireless coverage of any sort has produced some grumbling from Buffs fans in recent years. According to Matt Biggers, CU’s chief marketing officer and associate athletic director for external affairs, wireless coverage inside the sports venues has been a topic of internal research for more than 6 years.

“It was all about finding a partner and a financial model that works for us,” said Biggers. “It finally got to a point where it made sense to pull the trigger.”

Neutral host model appealing to schools

Editor’s note: This report is from our latest STADIUM TECH REPORT, an in-depth look at successful deployments of stadium technology. Included with this report is a profile of the Wi-Fi records set at Super Bowl 53, as well as a profile of Wi-Fi at Vivint Smart Home Arena in Salt Lake City! DOWNLOAD YOUR FREE COPY now!

The CU Events Center, home of Colorado hoops teams. Credit: Paul Kapustka, MSR

The model brought to CU is a classic neutral-host operation, where a provider like NCN (which bought the former sports-stadium practice from 5 Bars) will build a school’s Wi-Fi and DAS networks under a revenue-sharing deal with the school where the carriers help some with upfront payments and then provide payments over a long-term lease to operate on the DAS.

The neutral-host option is one good way for schools or teams with smaller budgets or lightly used facilities to bring connectivity to arenas. CU’s Folsom Field, for example, doesn’t see much use other than the six home games per football season. This year, the stadium will see big crowds beyond football only at a few events, including the Memorial Day Bolder Boulder 10K footrace (which ends inside the stadium), a Fourth of July fireworks celebration, and a couple of July concerts featuring the Dead & Company tour.

According to James Smith, vice president of carrier services for NCN, AT&T will be the anchor tenant on the DAS, and will be first to be operational. Verizon Wireless and T-Mobile, Smith said, are still negotiating long-term agreements but are expected to be on the DAS by 2020.

NCN [then under its old name of 5 Bars] negotiated a similar neutral-host deal with CU’s neighbor to the north, Colorado State University, for CSU’s new football stadium which opened in 2017. Now known as Canvas Stadium, the 41,000-seat venue had 419 total Wi-Fi access points when it opened, with approximately 250 of those used in the bowl seating area. Like CSU’s deployment, the Wi-Fi network at Folsom Field will use primarily under-seat AP deployments, mainly because the stadium’s horseshoe layout has no overhangs.

DAS gear already installed in the CU Events Center

According to NCN’s Smith, the current plan sees a deployment of 550 APs in Folsom Field, with another 70 APs in the basketball arena, the CU Events Center. Both venues’ networks will be served by a central head-end room located in an old telephone PBX space near the center of campus. Fiber links will run from there to both Folsom Field and the Events Center.

At Folsom, the NCN team will have a long list of deployment challenges, mainly having to navigate the construction particulars of a stadium that has been gradually expanded and added onto over the years.

“Sometimes it’s hard to know what’s behind a brick,” said NCN director of program management Bryan Courtney, speaking of existing infrastructure that has been around for decades. Smith said the Folsom Field DAS will make use of overhead antennas, including some that will require new flagpole-type structures that will need to match Folsom Field’s architectural heritage.

Basketball arena is all top-down

At the 11,064-seat CU Events Center, formerly known as the Coors Events Center, deployment of both Wi-Fi and DAS will be somewhat easier, as all the gear servicing the seating area will be suspended from the catwalks. With the main concourse at stadium entry level and all the seats in a single rectangular bowl flowing down from there, the ceiling is close enough for good top-down coverage for both Wi-Fi and celluar, NCN’s Smith said.

The Golden Buffalo Marching Band on a CU game day. Credit: Paul Kapustka, MSR

Though deployment of both networks in the Events Center is currently underway, neither will be active until after the current college basketball season is completed. However, the Events Center stays somewhat more busy than the football stadium, with events like local high school graduations and other special events (like a Republican Party debate in 2015) making use of the space. Both networks should be fully up and running by the next basketball season, according to NCN.

Unlike some other universities that are aggressively pursuing digital fan-connection strategies, CU’s Biggers said the school will start slowly with its fan-facing networks, making sure the experience is a solid one before trying too hard.

“We’re pretty conservative, and this is a complicated project and we want to make sure we get it right,” said Biggers. Though Biggers said CU fans haven’t been extremely vocal about connectivity issues inside the sports venues, he does admit to hearing about “some frustration” about signals in some areas of the stadium (which until now has only been served by a couple of dedicated macro antennas from the outside).

“There’s definitely a hunger [for wireless service],” Biggers said.

On the business side, Biggers said CU will also be taking more time to evaluate any additions to its game-day digital operations. Though CU recently introduced a mobile-only “buzzer beater” basketball ticket package that offered discounted passes that would deliver an assigned seat to a device 24 hours before game time, Biggers said that for football, a longtime paper-ticket tradition for season ticket holders would likely stay in place.

Colorado will also “re-evaluate” its game-day mobile application strategy, Biggers said, with the new networks in mind. “But the real game-changer for us is data collection,” he said. “We’re most excited about having data to better serve the fans.”

Commentary: Cheer, Cheer for old Wi-Fi

A hoops fan records action during the FInal Four at U.S. Bank Stadium. Credit all photos: Paul Kapustka, MSR (click on any picture for a larger image)

News item: Super Bowl 53 sees 24 terabytes of Wi-Fi data used.

Second news item: Final Four weekend sees 31.2 terabytes of Wi-Fi data used.

Even as people across the wireless industry seem ready to dig Wi-Fi’s grave, the view from here is not only is Wi-Fi’s imminent death greatly exaggerated, things may actually be heading in the other direction — Wi-Fi’s last-mile and in-building dominance may just be getting started.

The latest ironic put-down of Wi-Fi came in a recent Wall Street Journal article with the headline of “Cellphone Carriers Envision World Without Wi-Fi,” in which a Verizon executive calls Wi-Fi “rubbish.” While the article itself presents a great amount of facts about why Wi-Fi is already the dominant last-mile wireless carrier (and may just get stronger going forward) the article doesn’t talk at all about the Super Bowl, where Verizon itself basically turned to Wi-Fi to make sure fans at the big game who were Verizon customers could stay connected.

Wi-Fi speedtest from U.S. Bank Stadium during the Final Four championship game.

As readers of MSR know, the performance of the cellular DAS at Mercedes-Benz Stadium in Atlanta has been a question mark since its inception, and the emergence of competing lawsuits between lead contractor IBM and supplier Corning over its implementation means we may never learn publicly what really happened, and whether or not it was ever fixed. Though stadium tech execs and the NFL said publicly that the DAS was fine for the Super Bowl, Verizon’s actions perhaps spoke much louder — the carrier basically paid extra to secure part of the Wi-Fi network bandwidth for its own customers, and used autoconnect to get as many of its subscribers as it could onto the Wi-Fi network.

While we did learn the Wi-Fi statistics in detail — thanks to the fact that Wi-Fi numbers are controlled by the venue, not the carriers — it’s interesting to note that none of the four top cellular providers in the U.S. would give MSR a figure of how much cellular traffic they each saw in the stadium on Super Sunday. For the record, stadium officials said they saw 12.1 TB of data used on the Mercedes-Benz Stadium DAS on Super Bowl Sunday, a figure that represents the total traffic from all four carriers combined. But how that pie was split up will likely forever remain a mystery.

AT&T did provide a figure of 23.5 TB for Super Bowl traffic inside the venue as well as in a 2-mile radius around the stadium, and Sprint provided a figure (25 TB) but put even a less-measurable geographic boundary on it, meaning Sprint could have basically been reporting all traffic it saw anywhere inside the greater Atlanta city limits. Verizon and T-Mobile, meanwhile, both refused to report any Super Bowl cellular statistics at all.

An under-seat Wi-Fi AP placement in the end zone seating at the Final Four.

Verizon also did not reply to a question about how much traffic it saw on the Verizon-specific Wi-Fi SSID inside the venue. While we get the marketing reasons for not reporting disappointing stats (why willingly report numbers that make you look bad?), it seems disingenious at best for one Verizon executive (Ronan Dunne, executive vice president and president of Verizon Wireless) to call Wi-Fi “rubbish” when another part of the company is relying heavily on that same rubbish technology to make sure its customers can stay connected when the cellular network can’t keep up. One man’s trash, I guess, is another division’s treasure.

Wi-Fi 6 and more spectrum on the way

For venue owners and operators, the next few years are likely going to be filled with plenty of misinformation regarding the future of wireless. The big carriers, who pull in billions each quarter in revenue, are staking their near-term future on 5G, a label for a confusing mix of technologies and spectrum chunks that is unlikely to be cleared up anytime soon. Unlike the celluar industry change from 3G to 4G — a relatively straightforward progression to a new and unified type of technology — the change to 5G has already seen carriers willing to slap the marketing label on a different number of implementations, which bodes many headaches ahead for those in the venue space who have to figure out what will work best for their buildings and open spaces.

There’s also the imminent emergence of networks that will use the CBRS spectrum at 3.5 GHz, which will support communications using the same LTE technology used for 4G cellular. Though CBRS has its own challenges and hurdles to implementation, because it is backed by carriers and the carrier equipment-supply ecosystem, you can expect a blitz of 5G-type marketing to fuel its hype, with poor old Wi-Fi often the target for replacement.

While the Wi-Fi Alliance and other industry groups rallying around Wi-Fi might seem like the Rebel Alliance against a First Order dreadnought, if I’ve learned anything in my career of technology reporting it’s that you should never bet against open standards. I’ve been around long enough to see seemingly invincible empires based on proprietary schemes collapse and disappear under the relentless power of open systems and standards — like Ethernet vs. DEC or IBM networking protocols, and TCP/IP vs. Novell — to count out Wi-Fi in a battle, even against the cellular giants. In fact, with the improvements that are part of Wi-Fi 6 — known also as 802.11ax in the former parlance — Wi-Fi is supposed to eventually become more like LTE, with more secure connections and a better ability to support a roaming connection and the ability to connect more clients per access point. What happens then if LTE’s advantages go away?

With Wi-Fi 6 gear only now starting to arrive in the marketplace, proof still needs to be found that such claims can work in the real world, especially in the demanding and special-case world of wireless inside venues. But the same hurdles (and maybe even more) exist for CBRS and 5G technologies, with big unanswered questions about device support and the need for numerous amounts of antennas that are usually ignored in the “5G will take over the world soon” hype stories. I’d also add to that mix my wonder about where the time and talent will come from to install a whole bunch of new technologies that will require new learning curves; meanwhile, as far as I can tell the companies supporting Wi-Fi continue to add technology pros at ever-growing user and education conferences.

So as we ready for the inevitable challenge of sifting through cellular FUD and hype let’s have a cheer for good old Wi-Fi — for now the champion of the biggest data-demand days in venues, and maybe the leader for years to come.

U.S. Bank Stadium sees 31.2 TB of Wi-Fi data used during Final Four weekend

The Final Four generated record Wi-Fi totals this year at U.S. Bank Stadium in Minneapolis. Credit all photos: Paul Kapustka, MSR (click on any picture for a larger image)

Fans at this year’s NCAA Men’s Final Four basketball tournament at U.S. Bank Stadium in Minneapolis used more than 31 terabytes of data on the Wi-Fi network during the championship weekend, with stadium records set in total single-day Wi-Fi usage and sustained data rates, and overall records set for concurrent connections and unique connections, according to figures from the NCAA.

The semifinal matches on April 6 between Auburn and Virginia and Texas Tech and Michigan State saw fans use the second-highest single-day Wi-Fi total we have seen reported, with 17.8 TB of data used. The Wi-Fi total surpassed the 16.31 TB of Wi-Fi data used in the same stadium during Super Bowl 52 on Feb. 4, 2018; only Super Bowl 53 this year at Mercedes-Benz Stadium in Atlanta, with 24.05 TB of Wi-Fi used, has seen a bigger data day (according to our unofficial list of such data events).

According to the NCAA figures, the network saw 51,227 unique users on Final Four Saturday, out of 72,711 in attendance. The 70 percent take rate just beats the 69 percent take rate seen at Super Bowl 53, an overall sign perhaps that bucket-event fans are increasingly turning to stadium Wi-Fi for connectivity. At Super Bowl 52 in U.S. Bank Stadium, there were 40,033 unique users on the Wi-Fi network (out of 67,612 in attendance), a take rate of 59 percent.

A familiar scene at the FInal Four — a fan recording their experience

The peak concurrent user number from Final Four Saturday of 31,141 was also an overall record, beating Super Bowl 53’s mark of 30,605. (Super Bowl 53 had 70,081 fans in attendance for the Feb. 3 game between the New England Patriots and the Los Angeles Rams.) The Wi-Fi network numbers for Monday’s championship game (won by Virginia 85-77 over Texas Tech in overtime) saw big numbers itself, with 13.4 TB of total data used, and 48,449 unique connections and 29,487 peak concurrent users (out of 72,062 in attendance). Monday’s game also produced a peak throughput number of 11.2 Gbps just after the game ended. The total official Wi-Fi data used during the semifinals and final was 31.2 TB.

According to stadium network officials, there were 1,414 active Cisco access points for the Final Four games, with some permanent Wi-Fi APs not being used because they were covered by the temporary seats that extended out to the court built in the middle of where the football field usually is. However, the temporary seating was covered by an additional 250 APs and 50-plus switches in a temporary network built by AmpThink and the stadium network team (look for a deeper profile of the temporary network in our upcoming Summer STADIUM TECH REPORT issue!).

Speed tests taken by Mobile Sports Report showed robust Wi-Fi connectivity all around the venue on both days, with marks like a 48.6 Mbps download and 44.0 Mbps upload in the higher seating section during pregame for Saturday’s events, another mark of 45.3 Mbps / 38.7 Mbps on the third-level main concourse close to Saturday’s tipoff, and a mark of 54.8 Mbps / 38.3 Mbps on the main lower-level concourse just after tipoff of Monday’s championship game.

One of the temporary seating under-seat Wi-Fi APs

“The traffic we experience on Wi-Fi networks at the Final Four is considerable each year, and Minneapolis was no exception,” said David Worlock, director of media coordination and statistics for the NCAA tournament. “We were completely satisfied with the performance of the network throughout the weekend.”

THE MSR TOP 20 FOR WI-FI

1. Super Bowl 53, Mercedes-Benz Stadium, Atlanta, Ga., Feb. 3, 2019: Wi-Fi: 24.05 TB
2. NCAA Men’s 2019 Final Four semifinals, U.S. Bank Stadium, Minneapolis, Minn., April 6, 2019: Wi-Fi: 17.8 TB
3. Super Bowl 52, U.S. Bank Stadium, Minneapolis, Minn., Feb. 4, 2018: Wi-Fi: 16.31 TB
4. NCAA Men’s 2019 Final Four championship, U.S. Bank Stadium, Minneapolis, Minn., April 8, 2019: Wi-Fi: 13.4 TB
5. 2018 College Football Playoff Championship, Alabama vs. Georgia, Mercedes-Benz Stadium, Atlanta, Ga., Jan. 8, 2018: Wi-Fi: 12.0 TB*
6. Super Bowl 51, NRG Stadium, Houston, Feb. 5, 2017: Wi-Fi: 11.8 TB
7. Atlanta Falcons vs. Philadelphia Eagles, Lincoln Financial Field, Philadelphia, Pa., Sept. 6, 2018: Wi-Fi: 10.86 TB
8. Super Bowl 50, Levi’s Stadium, Santa Clara, Calif., Feb. 7, 2016: Wi-Fi: 10.1 TB
9. Taylor Swift Reputation Tour, Gillette Stadium, Foxborough, Mass., July 27, 2018: Wi-Fi: 9.76 TB
10. Minnesota Vikings vs. Philadelphia Eagles, NFC Championship Game, Lincoln Financial Field, Philadelphia, Pa., Jan. 21, 2018: Wi-Fi: 8.76 TB
11. Jacksonville Jaguars vs. New England Patriots, AFC Championship Game, Gillette Stadium, Foxborough, Mass., Jan. 21, 2018: Wi-Fi: 8.53 TB
12. Taylor Swift Reputation Tour, Broncos Stadium at Mile High, May 25, 2018: Wi-Fi: 8.1 TB
13. Kansas City Chiefs vs. New England Patriots, Gillette Stadium, Foxborough, Mass., Sept. 7, 2017: Wi-Fi: 8.08 TB
14. SEC Championship Game, Alabama vs. Georgia, Mercedes-Benz Stadium, Atlanta, Ga., Dec. 1, 2018: Wi-Fi: 8.06 TB*
15. Green Bay Packers vs. Dallas Cowboys, Divisional Playoffs, AT&T Stadium, Arlington, Texas, Jan. 15, 2017: Wi-Fi: 7.25 TB
16. Stanford vs. Notre Dame, Notre Dame Stadium, South Bend, Ind., Sept. 29, 2018: 7.19 TB
17. (tie) Southern California vs. Notre Dame, Notre Dame Stadium, South Bend, Ind., Oct. 21, 2017: 7.0 TB
Arkansas State vs. Nebraska, Memorial Stadium, Lincoln, Neb., Sept 2, 2017: Wi-Fi: 7.0 TB
18. WrestleMania 32, AT&T Stadium, Arlington, Texas, April 3, 2016: Wi-Fi: 6.77 TB
19. Wisconsin vs. Nebraska, Memorial Stadium, Lincoln, Neb., Oct. 7, 2017: Wi-Fi: 6.3 TB
20. Super Bowl 49, University of Phoenix Stadium, Glendale, Ariz., Feb. 1, 2015: Wi-Fi: 6.23 TB

* = pending official exact data

Amalie Arena’s MatSing-powered DAS ready for Women’s Final Four

MatSing ball antennas seen behind championship banners at Amalie Arena. Credit all photos: MatSing (click on any photo for a larger image)

The new DAS at Amalie Arena in Tampa, which uses 52 MatSing ball antennas, is fully operational and ready for this weekend’s NCAA Women’s Final Four, which starts on Friday.

According to AT&T, which is running and operating the new DAS, the new network “is officially on-air,” after going through some test runs during Tampa Bay Lightning NHL games. According to one informer, AT&T CEO John Donovan (an old friend of MSR) attended a recent hockey game at Amalie and gave a big thumbs-up to the new DAS, which is the biggest known installation of the unique MatSing antennas, which are basically huge spheres with lots of directional cellular antennas inside.

A press release from AT&T about the new DAS claims that has boosted cellular capacity inside Amalie Arena by 400 percent from last year. The new DAS also uses Corning ONE gear on the back end.

MSR will be in Minneapolis this weekend at the other Final Four, so if you are in Tampa for the women’s tourney take a speedtest or two on cellular and let us know what you see. We are watching the DAS deployment at Amalie Arena carefully since it is our guess that it won’t be the last you hear of MatSing deployments this year. Some more photos from the Amalie Arena MatSing deployment below.

New Report: Record Wi-Fi at Super Bowl 53, and Wi-Fi and DAS for Colorado’s Folsom Field

MOBILE SPORTS REPORT is pleased to announce the Spring 2019 issue of our STADIUM TECH REPORT series, the ONLY in-depth publication created specifically for the stadium technology professional and the stadium technology marketplace.

Our string of historical in-depth profiles of successful stadium technology deployments continues with reports from the record-setting Wi-Fi day at Super Bowl 53, a look at the network performance at Little Caesars Arena, plans for Wi-Fi and DAS at the University of Colorado and more! Download your FREE copy today!

We’d like to take a quick moment to thank our sponsors, which for this issue include Mobilitie, JMA Wireless, Corning, Boingo, MatSing, and Cox Business/Hospitality Network. Their generous sponsorship makes it possible for us to offer this content free of charge to our readers. We’d also like to welcome readers from the Inside Towers community, who may have found their way here via our ongoing partnership with the excellent publication Inside Towers. We’d also like to thank the SEAT community for your continued interest and support.

Texas A&M’s mobile browser end-around: How the Aggies and AmpThink changed the game-day fan engagement process

A look at the 12thmanlive.com site at a Texas A&M home game this past season. Credit: Texas A&M (click on any photo for a larger image)

In the short history of in-stadium mobile fan engagement, a team or stadium app has been the go-to strategy for many venue owners and operators. But what if that strategy is wrong?

You can always count on team and stadium apps to be introduced with a long list of bells and whistles, from in-seat food ordering and delivery to digital ticketing, instant replay options and venue wayfinding services. Yet after those apps are bought and released, very few teams or stadium-app vendors are willing to provide statistics on how those features are — or are not — being used. As such, the business benefits of almost every stadium app ever launched remain a mystery.

In fact, the only statistic that emerges with any regularity in regards to stadium apps in their still-young lifetime is that their game-day usage usually trails general-purpose mobile-phone applications by a large margin, far behind social media applications like Facebook, Snapchat, Twitter and Instagram, as well as email and text messaging. So why is the conventional wisdom of having a game-day app still so conventional?

To seek an answer to that question and in part to “question every underlying assumption” involving fan digital engagement, Texas A&M University partnered with AmpThink this fall on a wide-ranging experiment centered around using mobile web, as well as a captive Wi-Fi portal, to see if it was possible to find a better way to digitally engage fans, for far less than the cost of a custom app. And so far, it looks like they did.

Via its “12thmanlive.com” digital game-day program website and a gated entry to access the Wi-Fi network at Kyle Field, Texas A&M was able to gather more than 150,000 fan emails this football season as well as another 60,000-plus additional opt-ins for phone numbers, addresses and permissions for more messages from the school. In addition to the marketing lead generation, a “Black Friday” ticket sale promotion, sent to fans who had opted in for more emails, produced 2,285 tickets sold for a late-season game against LSU, an additional $137,100 revenue that Texas A&M might not have otherwise realized.

And unlike app-based programs, the simple WordPress headless CMS behind 12thmanlive.com allowed for fast updates for content and graphics, letting AmpThink and Texas A&M customize the site’s look repeatedly, to test — and measure — the success or failure of different offers and promotions during the seven-game 2018 home season. The 12thmanlive.com program is already slated for more experiments during the basketball season, with an eye to covering as many of the school’s sports as possible.

‘Don’t treat it like plumbing’

Editor’s note: This profile is from our latest STADIUM TECH REPORT, an in-depth look at successful deployments of stadium technology. Included with this report is a profile of the Wi-Fi network at Mercedes-Benz Stadium in Atlanta, as well as the renovated State Farm Arena, also in Atlanta! DOWNLOAD YOUR FREE COPY now!

It’s worthwhile to note here that such a forward-thinking experiment is not a huge surprise for the partnership of Texas A&M and AmpThink. While AmpThink may be best known for its expertise in large-venue Wi-Fi design (including at Texas A&M’s Kyle Field), the firm over the past few years has expanded into many other segments of the overall stadium connectivity market, including taking on full-stadium technology integration, optical fiber network design and deployment, enclosure design and manufacture, as well as digital-signage programming and related marketing activities. And Texas A&M was one of the first big stadiums to go all-in on fiber backbone connectivity for its Wi-Fi and DAS networks, which are still at the top level of performance three years after their debuts.

Initially, Texas A&M followed one of the emerging paths of market strategies when it came to engaging fans via its wireless networks: It didn’t require fans to give any identifying information (like email, or name and address) to connect. Some venues, like the Atlanta Falcons’ Mercedes-Benz Stadium, consider it a point of pride to make network connections as easy as possible, with no kind of login information needed. In Atlanta, a sponsorship from AT&T for the Wi-Fi service makes it easier for the Falcons to offer it with no strings attached.

The team at Texas A&M concluded that teams should put a higher value on connectivity, since there aren’t any measurable business metrics to be found that prove that fans are happier or more engaged simply because they have “frictionless” access to Wi-Fi. And by allowing fans to use Wi-Fi anonymously, teams give away opportunities to generate a return on their technology investment.

“Some people say the network’s just plumbing, but they don’t say why,” AmpThink president Bill Anderson said in a recent interview. “Two or three years ago, having Wi-Fi with no hurdles and getting big usage numbers gave you something to brag about. But now, we’re seeing more teams ask, ‘are we getting any return on investment for our technology?’ ”

The first step in exploring that direction was taken by the school for the 2018 football season, when Texas A&M introduced a portal for Wi-Fi login which required a name and a valid email address to connect. Acknowledging that it might lower overall Wi-Fi usage, the portal did serve Texas A&M’s goal of increasing its ability to identify attendees by only allowing access to those who were willing to share some information.

For Texas A&M, using a Wi-Fi portal was an opportunistic business decision. With robust Wi-Fi and cellular networks at Kyle Field, fans who didn’t want to share their information for Wi-Fi had the choice of using the cellular DAS, which has superb coverage from multiple carriers, including Verizon, AT&T and T-Mobile.

Mobile web instead of an app

For the 2018 football season, Texas A&M added another twist in a new direction: The debut of a new digital game-day program, called 12thmanlive.com, which uses HTML5 to create an app-looking web page with a simple menu of activity buttons located beneath a live scoreboard feed.

According to Pat Coyle, Texas A&M’s new senior associate athletic director and chief revenue officer, the mobile-web game day program was another important cog in the school’s broader data collection and monetization strategy, which he paints as a “digital flywheel” where Texas A&M can use a multitude of data points to “adjust and improve service to our key customers.” But key to that strategy was getting live attendees to engage with the network in greater numbers than previously seen. Enter, 12thmanlive.com.

What made 12thmanlive.com interesting from one perspective was not what it had, but what it didn’t have. With no app to download, the site was quickly available to anyone attending a game simply by entering the URL into a mobile-device browser. Its simple design (no photos or videos, for example) made it fast to load and easy to understand.

On the plus side, what the site did offer was activity much different from most team or stadium apps, which generally focus on content or on interactive services, like ticketing or loyalty programs. Among the 10 buttons on the site’s main interface were features including game-day rosters, a stats tracker and a way to send chat messages to stadium personnel; the site also included a number of sponsored promotions, including a giveaway contest for a helmet signed by new head coach Jimbo Fisher, future ticket giveaways, coupons for food and beverages, and a link to join the Wi-Fi network for fans who might have been on a cellular connection to begin with.

While team apps might have been looked at to fill game-day interactions, Coyle said that previous game-day statistics from Kyle Field’s Wi-Fi network showed fewer than 1 percent of fans would use the school’s old, downloadable app while attending a game.

With a web platform, the idea was that Texas A&M would have the ability to quickly add or change more game-day centric features and to integrate them with third-party services. But in the face of historic non-participation via the app, could Texas A&M and AmpThink get fans to click on a mobile website instead? And would it be worth the cost of trying?

A much cheaper experiment than an app

One obvious factor in the idea’s favor from the beginning was the low cost of development for a web-based project, especially when compared to that of a custom app. AmpThink estimates that most custom apps cost teams somewhere in the range of $1 million. Total costs for the 12thmanlive.com project were “in the mid-five figures,” according to the school, including not just the site and tools design but some “shoulder to shoulder” help from AmpThink during the season, according to Anderson.

A Kyle Field ribbon board advertises the stadium’s Wi-Fi network. Credit: Texas A&M

Launched at the start of the 2018 football season, the site was promoted in several ways, including messages on the big video board at Kyle Field as well as on smaller TV screens and ribbon boards throughout the stadium. The big screens also promoted individual contests, allowing fans to text a code word to a short numerical code, an action that would take them directly to the 12thmanlive.com site.

The Wi-Fi portal also helped, as a “welcome” email sent after a valid login to the network contained a prominent link to the 12thmanlive.com site.

Starting with the first game, the 12thmanlive.com site showed consistent user numbers, with an average visit total of approximately 8,500 fans per game over the 7-game season — close to 10 percent participation of all attendees, a 10x improvement over historic app interaction.

According to the school, Texas A&M started the season with the assumption that they did not know exactly what fans wanted. The 12thmanlive.com site featured some interesting content, like a stadium clock that was close to real time and game-day rosters. But analysis of site visits found that this game-related content had about zero dwell time and high abandonment rates. For contests and giveaways, however, there was very high engagement.

According to statistics provided by Coyle, a repeated contest to win a signed helmet was the most popular with 31,379 registrations over the seven games. That was followed in popularity by a milkshake coupon (14,261 registrations) and a free ticket contest (9,233 registrations).

Measurable and repeatable results

With the site only turned on during game days — and only promoted inside the stadium — the 12thmanlive.com efforts did not affect traffic to the team’s regular website, Coyle said.

Overall, the Wi-Fi portal and the 12thmanlive.com site garnered 156,543 total emails for Texas A&M, with 61,607 of those emails being new to the school’s database, according to figures from Coyle. Of that number, 44,894 came from the Wi-Fi portal, and another 16,713 unique emails came from registrations on 12thmanlive.com activities.

“While it’s natural to focus on 61,607 new records, the 156,543 number is also important,” said Coyle. “These are all fans who were anonymous but are now identified as ‘in attendance’ at particular games. Now we know more of the identities of folks who bought and attended games. So we can figure out which games the season ticket holders sold on secondary, for example.”

Coyle noted that Texas A&M’s overall strategy goes far beyond just the mobile web site, with power from the Wi-Fi network analytics also helping to spin the “flywheel.” For example, the school tested proximity marketing to educate fans about a new food stand on the 600 level of the stadium by using Wi-Fi location information to detect devices on that level, sending them an email promoting the food stand if they were registered in the system.

“We essentially used the Wi-Fi APs like beacons, and the difference is we didn’t need Bluetooth or a downloaded app to do this,” Coyle said.

When users who had previously logged in to the Wi-Fi network at a earlier game arrived for a new one, Coyle said the school was able to automatically trigger an email welcoming those users back; other network data collected included arrival and departure times, and DNS information to see what other apps fans are using, Coyle said.

“All of these data are more valuable when we can connect them to real people,” Coyle said. “When we know who these people are, we can use the data to adjust and improve service to our key customers. This will enhance loyalty, and eventually, profits.”

For Anderson, some additional proof in the pudding was the opt-in information fans were willing to share in the contests, giveaways and food coupon offers. On top of the email addresses another 60,055 fans gave permission to the school to send them follow-up marketing messages, a key indicator that people are willing to engage if they perceive value.

“Compared with other venues we work in, we saw better than expected opt-in rates,” AmpThink’s Anderson said. “I think it’s because Texas A&M gave fans a better value proposition.”

With actionable data already in hand, Texas A&M is iterating the 12thmanlive.com program for basketball season, with an eye toward next year’s football season and all the new ideas they can try. The WordPress content management system strategy allows teams and the schools to do a lot of the work themselves, since experience with WordPress is fairly widespread. In fact, Anderson said teams don’t even need to pick up the phone to call AmpThink, since what Texas A&M and AmpThink did is easily replicable from a DIY perspective.

“Anybody can just go out and get a good web person and build their own successes [with this model],” Anderson said.