Massive MIMO is Sprint’s path to 5G, says CTO Saw

Dr. John Saw, CTO of Sprint, at an IEEE keynote speech. Credit all photos: Sprint

Sprint chief technical officer John Saw has seen the future of cellular wireless, and according to him it was at a sports event.

“I was at the [Winter] Olympics where KT [Korea Telecom] and Intel set up the first 5G network,” said Saw in a recent phone interview. “Stadiums will be a good showplace for the capabilities of 5G. It’s pretty impressive what you can do with 5G that you can’t do today.”

Saw, who was CTO at WiMAX play Clearwire before that company became part of Sprint, will be the first to admit that the network built for the PyeongChang Olympics wasn’t “true” 5G, but said it was a good precursor. He also added that it wasn’t a cost-conscious deployment, something MSR had heard from other sources who said Intel and KT didn’t hold back when it came to spending.

“They spent a lot of money [on the network],” Saw said.

But some of the services the Olympic network was able to support included local viewing of replays using Intel’s True View technology, which gives fans the ability to watch a play or action from a 360-degree angle. While Intel has had limited deployments of the technology at some U.S. sporting events, for the Olympics Saw said they used hundreds of cameras linked over millimeter wave frequencies, which can offer very low latency.

“They needed [to have the images] in real time,” Saw said, and built the millimeter wave network to do just that. While the network “wasn’t fully compliant to the subsequent 5G standards, a lot of what they built is the forerunner to 5G,” Saw said. “It was a pretty cool showcase, and will certainly find a home in stadiums.”

No Millimeter Wave spectrum for Sprint

Editor’s note: This profile is from our latest STADIUM TECH REPORT, an in-depth look at successful deployments of stadium technology. Included with this report is a profile of a new MatSing ball DAS deployment at Amalie Arena, a new DAS for the Chicago Cubs at Wrigley Field, and a look at the networks inside the new Banc of California Stadium in Los Angeles! DOWNLOAD YOUR FREE COPY now!

Millimeter wave networks, however, won’t be part of Sprint’s early push toward 5G, said Saw. Instead, he said Sprint will concentrate on deploying “Massive MIMO” networks in its rich space of spectrum at the 2.5 GHz frequency, where Sprint controls upwards of 150 MHz of spectrum in most major U.S. metro markets.

Without trying too hard here to explain exactly how Massive MIMO works — think splitting up transmissions between mulitple antennas then using lots of compute power to bring the data back together — the key here is Sprint’s spectrum holdings, which Saw said are still only about half used.

“When we launched LTE [on the 2.5 Ghz spectrum] we used less than half the spectrum we had,” Saw said. “With 5G, we will use all the spectrum we have in market. We’ll be one of very few carriers who launch 5G in the same [spectrum] footprint [as LTE].”

With the ability to carry “four to 10 times the capacity of regular LTE,” Saw sees Massive MIMO 5G as something perfect for large public venues like stadiums and shopping malls.

Dr. John Saw

“When you have sports events with 50,000 people in the stadium, you need this kind of capacity,” Saw said. “Were building out the footprint for [5G] this year, and we’ll launch next year.”

Saw said that part of the infrastructure support for 5G networks will be different as well.

“It’s more than just speed, or more capacity. It’s more than tonnage,” Saw said. “We’ll have a different way of deploying the new network, with a more distributed core, one [with more resources] out to the edge of the network.”

Why is such equipment redistribution necessary? According to Saw, a network with more components at the edge can help with content delivery for the new bandwidth-hungry apps like virtual-reality replays.

“Say you want VR at a hockey game, where you want to give real time [replay] viewing to customers, with different camera angles,” Saw said. “You literally have to have the 5G core inside the stadiums, so it can process [the content] without having to go back to the cloud.”

Will DAS trail in the path to 5G?

One type of network Saw doesn’t see leading the way to 5G is the traditional DAS, or distributed antenna system.

“DAS is going to have to migrate to 5G,” Saw said. “It’s not going to lead the pack.”

In fact, Saw said Sprint has been somewhat of a reluctant DAS participant at times, including at the most recent Super Bowls. In the last two of the NFL’s “big game” events, Super Bowl 51 in Houston and Super Bowl 52 in Minneapolis, Saw said Sprint used small cell deployments instead of the neutral DAS systems to augment its coverage.

“We had hundreds of small cells, inside and outside [the venues],” Saw said. “We got the same performance, maybe better, for a lot less money.”

Part of the issue for Sprint and DAS, Saw said, is that the carrier usually has to pay more for its unique spectrum bands, especially the 2.5 GHz frequencies which are not used by any of the other major wireless carriers.

“We always think through before we sign up for DAS fees… there’s more than one way to skin a cat,” Saw said. While in many cases there is no alternative except to participate in a neutral-host configuration, Saw said “we do prefer small cells.”

Will CBRS help?

One of the more hyped platforms being pushed this year is use of the CBRS spectrum at the 3.5 GHz range for not just more carrier networks, but even for “private” LTE networks, like for venues or campuses.

“It’s an interesting concept because it opens things up to more than just four operators,” Saw said. But he also called out the need for an online database to make sure CBRS spectrum use doesn’t interfere with systems run by the U.S. Navy, and added that without any definitive FCC action yet, the rules for future CBRS use are still unclear.

“There’s quite a lot of work to be done, and not a lot of spectrum there,” said Saw. While claiming that Sprint is “watching CBRS with interest,” he added that with its 2.5 GHz holdings, Sprint most likely won’t be at the front of any CBRS deployments.

“At the end of the day, CBRS is not 5G,” Saw said.

How will a merger with T-Mobile help?

Since our conversation took place just a day after Sprint and T-Mobile announced their renewed plans to merge, Saw didn’t have a lot of details to share, beyond his opinion that the two companies’ different spectrum holdings would build a more powerful competitor when put together.

“When you put our 2.5 (GHz) with their 600 MHz it gives you a much larger footprint with higer capacity,” Saw said. “There’s tremendous synergy. Both [companies] are enthusiastic about this deal.”

Editor’s note: This post is part of Mobile Sports Report’s new Voices of the Industry feature, in which industry representatives submit articles, commentary or other information to share with the greater stadium technology marketplace. These are NOT paid advertisements, or infomercials. See our explanation of the feature to understand how it works.

Eagles sign Appetize for new point-of-sale system at Lincoln Financial Field

Self-serve kiosks from Appetize allow fans to order and pay for their own food for nearby pickup. Credit all photos: Appetize

The Philadelphia Eagles have signed a deal with Appetize to bring its technology-centric point of sale system into Lincoln Financial Field, a deal designed in part to help speed up concessions transactions for home fans of the new Super Bowl champions.

According to a press release out today, Appetize will install “more than 500” iOS- and Android-based terminals inside the Linc, including some touch-screen fan-facing checkout displays as well as self-service concession kiosks that are meant to function much like the terminals found at airports for checking in to flights.

Kevin Anderson, co-founder and chief strategy officer for Appetize, said in a phone interview that internal company tests have shown that the self-service kiosks can speed up a concessions transaction by as much as 20 percent, good news for fans who are tired of spending lost minutes standing in line waiting for a cheesesteak. For teams and venue owners, the 10-inch screens being installed at other, regular concession stands in the Linc can help with upsell, as Anderson said that the screen space allows the operator to program in add-on options (like adding a drink or fries to a sandwich order) via a side-of-screen advertisement that makes it easy to add to the order with a click.

In addition to the new customer-facing technology, Appetize is also gaining entree to venues for its cloud-based back-end systems, which Anderson said cuts out the need for teams to have localized infrastructure to buy and manage. Though he won’t name them all yet, in addition to the Eagles win Anderson said Appetize has claimed three other NFL contracts that were out for bid this summer, perhaps proof that the company’s mantra of having “enterprise and modern” facets in their systems is finding receptive ears.

Making sure the infrastructure is set up for kiosks

While MSR clearly needs to schedule a stadium visit sometime to check out kiosk wait times compared to older concessions systems, Anderson did note that teams can’t just plug the kiosks in and expect them to work with an existing infrastructure. “There is a shift in operations” that is necessary, he said, since kiosks can double or triple the number of orders in a given time to an existing kitchen location. However, having kiosks also means that self-service stands can be staffed with workers who simply put orders together, instead of having to train those workers on payment systems and devices.

New tablet-based POS terminals can entice fans into add-on purchases

One area where Appetize doesn’t see a lot of explosive growth is on the in-seat delivery end, a trend that seems to slowing down and finding its way mostly into premium seating areas at most venues. While Appetize can support mobile-device ordering and delivery (it even started its corporate life with an end-user focus on a mobile/delivery app) Anderson said the infrastructure and human engineering necessary to support a full-stadium delivery scheme is usually found to be unworkable. The San Francisco 49ers, who opened Levi’s Stadium in 2014 with mobile-app delivery of concessions to every seat, scrapped that service last season.

“We’re definitely not seeing [customers] asking us to do full-stadium” in-seat delivery, Anderson said. However, having the ability to place an order via a mobile device does have value in premium seating areas, where stadiums may already have systems like the Appetize-based one currently used at Lincoln Financial Field, where servers with wireless devices roam the seating areas offering in-seat ordering as a white-glove service.

“It’s a nice line-item for the season ticket sales sheet” to offer in-seat delivery services in places where it makes sense, Anderson said. “Venues are being smart [now] about where they are putting it.”

State of the Stadium Network, 2018: Smooth sailing right now but rough waters ahead?

Here at Mobile Sports Report we used to have a yearly survey (called “State of the Stadium”) which we used mainly to see if and when wireless networks were being deployed in large sports venues. After just a few years, it quickly became apparent that for almost all the respondents we heard from, the question was no longer “if” networks would be deployed, but just “when.” And for more than most, the “when” was happening already.

Looking back over the past year or so of our stadium profile visits, it’s clear that the still-young market of large-venue wireless connectivity has reached a certain level of maturity, especially when it comes to well-funded deployments of Wi-Fi and cellular distributed antenna system (DAS) networks. Where in the recent past the San Francisco 49ers’ Levi’s Stadium was a groundbreaker with its extensive wireless coverage when it opened in 2014, such networks have now become the standard expectation for new venues like the Sacramento Kings’ Golden 1 Center, U.S. Bank Stadium in Minneapolis, Mercedes-Benz Stadium in Atlanta, T-Mobile Arena in Las Vegas and even in many “Tier 2” stadiums like Colorado State University’s new football stadium.

Similar high-quality networks are also finding their way into older stadiums as those venues get networking for the first time or revamp their initial outlays. Over the past couple years we’ve seen new networks appear in old venues like Notre Dame Stadium, SAP Center in San Jose and more recently, the Alamodome. Other venues that led the initial charge toward wireless networks for fans, like the New England Patriots’ Gillette Stadium, the Bank of America Stadium in Charlotte and Lincoln Financial Field in Philadelphia, all had recent upgrades to their wireless infrastructures as the venues smartly stayed in tune with the ever-increasing demands of fans and their mobile devices. And then there are pioneers like AT&T Park and AT&T Stadium, which have always managed to lead the way in finding new ways to keep their connectivity at state of the art levels.

What really helps point to a certain level of maturity is the different methods and manufacturers who all have figured out their own ways to get things done. Wi-Fi antenna deployments placed under seats, in railing mounts or overhead have all proven themselves in numerous live tests; DAS deployments have shown similar successes in a somewhat corresponding number of techniques and equipment usages; in all, there seems to be well more than one path to a successful wireless infrastructure. But before we start taking networking for granted as a commodity like electricity or plumbing, it’s a good time to remember that unlike those two services, networking doesn’t stand still. As new end-user devices and the apps they run continue to drive growth in demand, the question now is whether current Wi-Fi and DAS networks for venues will be able to keep up, or whether new technology is needed.

The need for more wireless spectrum

Editor’s note: This profile is an excerpt from our latest STADIUM TECH REPORT issue for Spring 2018, which includes a look at Wi-Fi performance during the Final Four, a recap of wireless performance at Super Bowl 52, a profile of new venue construction in Los Angeles and more! DOWNLOAD YOUR FREE COPY right now from our site!

In a previous lifetime as a cellular systems analyst, yours truly wrote a long research paper about the importance of spectrum, predicting that at some point the leading wireless carriers, namely AT&T and Verizon Wireless, were going to need new bands to expand their services. While there have been some technological tweaks to find more capacity than originally thought in the 4G LTE space, on the cellular front the march to so-called “5G” systems is well underway, with the predictable problem of marketing promises being far out ahead of usable reality.

While we’ll save an in-depth look at 5G for another point in time, it’s useful to notice that all the large wireless carriers are already making 5G announcements, of 5G trials, of 5G local networks and other assorted claims of leadership. While nobody really knows exactly what 5G is for sure, what is known is that to get to the faster/better claims being staked there is going to be new spectrum in play for 5G services, and some of it may work better than others for use inside venues.

What’s clearly not known at all is how 5G services will arrive for sports stadiums, as in whether or not they will fit inside the current DAS model. Will carriers be able to share 5G systems like they do now on neutral-host DAS deployments? Right now that’s doubtful given that carriers like Sprint and T-Mobile are already talking about 5G deployments on much different spectrum spaces — and if the proposed merger between the two carriers becomes reality, how does that further change the 5G planning landscape? Perhaps the only thing we can be sure of is a lot of mixed messages in the near future about the best way to move forward from a cellular perspective.

Will carriers take over unlicensed bands?

On the Wi-Fi side of things, a smart friend of ours once claimed that when it came to Wi-Fi network deployments, “real estate is the new spectrum” since building owners could pretty much stake a free claim to the unlicensed spectrum spaces within their walls.

But now, there may be some storm clouds brewing as carriers seek to implement systems that let them use some of the 5 GHz unlicensed channels for LTE networks, an idea with possible consequences for current venue networks.

Aruba’s Chuck Lukaszewski wrote about this issue for Mobile Sports Report last summer, and some of his points bear repeating and remembering, especially these two: One, most Wi-Fi networks in large stadiums are already “spectrum constrained,” meaning that they need all the channels in the unlicensed band to ensure good service across an entire venue; Two, by introducing a system where cellular providers would use a chunk of that spectrum for LTE networks, the effects are as yet unknown — and venue operators would most likely be at the mercy of carriers to both acknowledge and comply with any possible conflicts that might arise.

As we here at Mobile Sports Report are cynics of the first order, our first question in this matter is about whether or not there are any clauses in those contracts venues have signed with carriers that will allow the cellular providers to “share” spectrum in the Wi-Fi space as well. While Verizon, AT&T and other service providers have paid quite a few dollars to support many stadium systems, it’s worth it to wonder if some of those deals may not look so good going forward if they include the legal ability for carriers to poach spectrum currently used only by Wi-Fi.

CBRS to the rescue?

Another technology/spectrum space we’ll be looking at more closely in the near future is the Citizens Broadband Radio Service, which sits at the 3.5 GHz space in the electromagnetic spectrum roster. Though new FCC rules on the use of this spectrum (currently used primarily by the U.S. Navy) haven’t yet been solidified, it seems from all signals that eventually what will emerge is a kind of tiered licensing type of situation with licenses that cover large, small or even local geographic areas, which may allow for building owners to set up private networks that work sort of like Wi-Fi does now.

One attractive option being touted is “private” LTE networks, where venue or building owners could build their own DAS-like LTE network infrastructure for CBRS spectrum, then rent out space to carriers or run their own networks like Wi-Fi but with LTE technology instead.

What’s unknown is exactly how the licensing scheme will shake out and whether or not big carriers will be able to dominate the space; here it’s helpful to remember that big wireless carriers typically spend millions in lobbying fees to influence decisions in places like the FCC, and venue owners spend… nothing. Verizon recently announced it expects to have CBRS-ready devices working before the end of this calendar year, so it’s likely that CBRS systems may be more of an immediate concern (or opportunity) for venues than 5G. And the marketing folks behind CBRS are on full speed ahead hype mode, even crafting a marketing name called “OnGo” as an easier-to-sell label than the geeky “CBRS.” So buyer beware.

Already, Mobile Sports Report has heard chatter from folks who are helping design networks for greenfield operations that the choices simply aren’t as clear as they were recently, when you could pretty much count on Wi-Fi and DAS to meet whatever wireless needs there were. While that duo may still be able to get the job done for the near future, looking farther ahead the direction is much less clear and the sailing no doubt much less smooth. Here at MSR, we’ll do our best to help batten the hatches and give as much clear guidance as we can. At the very least, it should be an interesting trip.

New Report: Wi-Fi scores at Final Four, Vegas Knights get more Wi-Fi, and more!

A live in-person report of the Wi-Fi network performance at this year’s Final Four is just the beginning of our latest STADIUM TECH REPORT, the ONLY in-depth publication created specifically for the stadium technology professional and the stadium technology marketplace.

Mobile Sports Report traveled this spring to San Antonio, Texas, to get a firsthand look at the new networks installed at the venerable Alamodome, including one new permanent Wi-Fi deployment and another specifically tailored for the temporary courtside seats the NCAA brings in for its crown jewel event of the men’s basketball season.

Download our free report to get the details on how this network was able to deliver a superb wireless experience to the almost 70,000 fans in attendance.

The report from San Antonio, however, is just the beginning of our content-rich Spring 2018 issue, which also contains another in-person review, this one of the updated Wi-Fi network at T-Mobile Arena, the home-ice castle for the NHL’s newest sensation, the Vegas Golden Knights. Prompted by the team’s somewhat unexpected on-ice success, the quick network upgrade is a great lesson on how to respond to fan-experience demands. And it’s all explained in the STADIUM TECH REPORT.

More Wi-Fi for Vegas Knights, new construction in LA

There’s also a profile of the new network that was part of the refurbishment of Minneapolis’ Target Center, home of the NBA’s Timberwolves, as well as a look at some innovative marketing programs combining digital signage and Wi-Fi for greater fan engagement. Our Terry Sweeney also provides a look at new venue construction and old venue remodels in Los Angeles, and we also have a full recap of the record-breaking Wi-Fi and DAS traffic at this year’s Super Bowl at U.S. Bank Stadium in Minneapolis — all available for free download from our site!

We’d like to take a quick moment to thank our sponsors, which for this issue include Mobilitie, JMA Wireless, Corning, Huber+Suhner, Cox Business, Boingo, Oberon and Aruba, a Hewlett Packard Enterprise company. Their generous sponsorship makes it possible for us to offer this content free of charge to our readers.

Average per-fan Wi-Fi use total jumps again at Super Bowl 52

Seen in the main concourse at U.S. Bank Stadium: Two IPTV screens, one Wi-Fi AP and a DAS antenna. Credit: Paul Kapustka, MSR

After a year where the actual amount of average Wi-Fi data used per connected fan at the Super Bowl dropped, the trend of more data used per fan reversed itself again to a new peak at Super Bowl 52, with an average total of 407.4 megabytes per user.

Even though the number of unique connections to the Wi-Fi network at U.S. Bank Stadium for Super Bowl 52 also increased to a record 40,033 users (according to the official statistics compiled by Extreme Networks), the jump from 11.8 terabytes of Wi-Fi data used at Super Bowl 51 to 16.31 TB used at Super Bowl 52 pushed the average per-user number to the top, surpassing the 333 MB per user number from Super Bowl 51, as well as the 370 MB per user mark seen at Super Bowl 50.

While this statistic has not ever been called out by the Extreme Networks Super Bowl compilations, we here at MSR think it is a vital mark since it shows that even with more users on the network those connected users are still using more data. That means that IT departments at venues everywhere should probably still plan for no letup in the overall continued growth in demand for bandwidth at large-venue events, especially at “bucket list” events like the Super Bowl.

Last year we guessed the drop in per-user totals from Super Bowl 50 to Super Bowl 51 might have been due to a larger number of autoconnected users, but we never got an answer from the Extreme Networks team when we asked that question. At U.S. Bank Stadium there was also an autoconnect feature to the Wi-Fi for Verizon Wireless customers, but it didn’t seem to affect the per-user total mark.

Minneapolis airport sees 6 TB of Wi-Fi traffic day after Super Bowl

Super Bowl signs hang in the concourse at Minneapolis-St. Paul airport. Credit: MAC (click on any photo for a larger image)

A day after Super Bowl 52 at U.S. Bank Stadium in Minneapolis set new records for wireless data consumption, the Minneapolis-St. Paul International airport had a big wireless day of its own, with 6 terabytes of traffic used on the airport’s Wi-Fi network and another 6.5 TB on the Verizon cellular network.

Eduardo Valencia, vice president and chief information officer for the Metropolitan Airports Commission, said the Wi-Fi data used on Feb. 5 was “close to double typical data consumption” on the free-access network provided by Boingo Wireless, even though the airport saw a fairly normal range of users connecting.

“There was no spike in [the number] of users, but the users who did connect consumed twice as much data, with downloads about 3 times normal,” Valencia said. The Monday-departure crowd, he said, saw about 31,000 unique users connect to the Wi-Fi network, which Valencia said “is at the top of the normal user range” the airport network usually sees. Valencia said that during the week leading up to the big game on Feb. 4, the airport Wi-Fi saw between 23,000 and 31,000 daily connections.

Boingo, which has been powering the Wi-Fi at Minneapolis-St. Paul International Airport (aka MSP) since 2012, updated and expanded coverage a year ago, according to Valencia. Though Boingo would not provide details on how many new APs were added or how many the network has now, Valencia said coverage was increased in many areas, like the tunnels between terminals, to make sure visitors didn’t lose connectivity.

New neutral host DAS from Verizon

Super Bowl LII signage along a moving walkway at MSP. Credit: MAC

The cellular infrastructure at the airport also got an upgrade before the Super Bowl, with a neutral host distributed antenna system (DAS) deployed by Verizon Wireless. The DAS, which uses Corning ONE fiber equipment on the back end, provided coverage for all the top wireless carriers, Valencia said. Though it was cut close — the final pieces went live on Jan. 19, according to Valencia — the expanded DAS, which added antennas all over the terminals as well as outside covering runways, also performed well, according to Valencia.

Though only Verizon stats were available, Valencia said Verizon saw an average of 2.8 TB of data per day in an 11-day span around the Super Bowl, with 6.5 TB of traffic seen on Monday, Feb. 5. Like the Wi-Fi traffic, Valencia said Verizon’s day-after total was about double the average daily consumption.

While there is extra pressure to perform ahead of the NFL’s big game — “The NFL told us the Super Bowl experience begins and ends at the airport,” Valencia said — the payoff will stay for years, as all the new network gear added in advance is permanent.

“We swallowed hard for 9 days, but the success was the culmination of a lot of planning,” Valencia said. “Now the good thing is, everything [in the network] is here to stay.”