New Report: Wi-Fi arrives at Ohio Stadium

MOBILE SPORTS REPORT is pleased to announce the Fall 2019 issue of our STADIUM TECH REPORT series, the ONLY in-depth publication created specifically for the stadium technology professional and the stadium technology marketplace.

Our latest issue contains an in-person report on the new Wi-Fi 6 network installed at Ohio Stadium, which is already the top collegiate Wi-Fi network in the country, producing record results. This issue also has an in-person profile of the Wi-Fi network at the new Las Vegas Ballpark, as well as a “first look” at Chase Center, the new home of the Golden State Warriors! Download your FREE copy today!

Inside the report our editorial coverage includes:
— An in-depth look at the new Wi-Fi 6 network installed at Ohio State University’s Ohio Stadium;
— An in-person report on the Wi-Fi network at the ‘hottest’ stadium in minor league baseball, the Las Vegas Ballpark;
— A look at the single, converged fiber network infrastructure at the soon-to-open Dickies Arena in Fort Worth;
— A “First Look” at the Chase Center, the new home of the Golden State Warriors.

Download your free copy today!

We’d like to take a quick moment to thank our sponsors, which for this issue include Mobilitie, JMA Wireless, Corning, Boingo, MatSing, Cox Business/Hospitality Network, Connectivity Wireless, and American Tower. Their generous sponsorship makes it possible for us to offer this content free of charge to our readers. We’d also like to welcome readers from the Inside Towers community, who may have found their way here via our ongoing partnership with the excellent publication Inside Towers. We’d also like to thank the SEAT community for your continued interest and support.

As always, we are here to hear what you have to say: Send me an email to kaps@mobilesportsreport.com and let us know what you think of our STADIUM TECH REPORT series.

Patriots see 11.58 TB of Wi-Fi data used at home opener

Fans using phones to record the new Super Bowl banner unveiling at Gillette Stadium. Credit: New England Patriots

The unveiling of the latest Super Bowl banner by the New England Patriots helped lead to another record night of Wi-Fi usage at Gillette Stadium, with 11.58 terabytes of data used by fans at Sunday night’s 33-3 win over the Pittsburgh Steelers.

According to figures from Gillette Wi-Fi provider Extreme Networks, 44,906 of the 65,878 in attendance Sunday night connected to the Wi-Fi network at some point, a take rate of 68 percent. The peak concurrent number of users on the network was 34,982, which according to Extreme happened when the Patriots unveiled their latest championship banner.

Of the 11.58 TB total, Extreme said 4.56 TB was used during pregame, followed by 6.58 TB used during the game and another 440 GB used during postgame. Extreme also said the stadium network saw a peak data transfer rate of 23.24 Gbps. The 11.58 TB mark is the highest recorded at the well-connected Gillette, topping the 9.76 TB mark seen during a Taylor Swift concert last year. In our unofficial records of top Wi-Fi single-day events, Sunday’s total is now the biggest non-playoff NFL game performance, and another sign that fan wireless data demands continue to grow.

THE MSR TOP 21 FOR WI-FI

1. Super Bowl 53, Mercedes-Benz Stadium, Atlanta, Ga., Feb. 3, 2019: Wi-Fi: 24.05 TB
2. NCAA Men’s 2019 Final Four semifinals, U.S. Bank Stadium, Minneapolis, Minn., April 6, 2019: Wi-Fi: 17.8 TB
3. Super Bowl 52, U.S. Bank Stadium, Minneapolis, Minn., Feb. 4, 2018: Wi-Fi: 16.31 TB
4. NCAA Men’s 2019 Final Four championship, U.S. Bank Stadium, Minneapolis, Minn., April 8, 2019: Wi-Fi: 13.4 TB
5. 2018 College Football Playoff Championship, Alabama vs. Georgia, Mercedes-Benz Stadium, Atlanta, Ga., Jan. 8, 2018: Wi-Fi: 12.0 TB*
6. Super Bowl 51, NRG Stadium, Houston, Feb. 5, 2017: Wi-Fi: 11.8 TB
7. Pittsburgh Steelers vs. New England Patriots, Gillette Stadium, Foxborough, Mass., Sept. 8, 2019: Wi-Fi: 11.58 TB
8. Atlanta Falcons vs. Philadelphia Eagles, Lincoln Financial Field, Philadelphia, Pa., Sept. 6, 2018: Wi-Fi: 10.86 TB
9. Super Bowl 50, Levi’s Stadium, Santa Clara, Calif., Feb. 7, 2016: Wi-Fi: 10.1 TB
10. Taylor Swift Reputation Tour, Gillette Stadium, Foxborough, Mass., July 27, 2018: Wi-Fi: 9.76 TB
11. Minnesota Vikings vs. Philadelphia Eagles, NFC Championship Game, Lincoln Financial Field, Philadelphia, Pa., Jan. 21, 2018: Wi-Fi: 8.76 TB
12. Jacksonville Jaguars vs. New England Patriots, AFC Championship Game, Gillette Stadium, Foxborough, Mass., Jan. 21, 2018: Wi-Fi: 8.53 TB
13. Taylor Swift Reputation Tour, Broncos Stadium at Mile High, May 25, 2018: Wi-Fi: 8.1 TB
14. Kansas City Chiefs vs. New England Patriots, Gillette Stadium, Foxborough, Mass., Sept. 7, 2017: Wi-Fi: 8.08 TB
15. SEC Championship Game, Alabama vs. Georgia, Mercedes-Benz Stadium, Atlanta, Ga., Dec. 1, 2018: Wi-Fi: 8.06 TB*
16. Green Bay Packers vs. Dallas Cowboys, Divisional Playoffs, AT&T Stadium, Arlington, Texas, Jan. 15, 2017: Wi-Fi: 7.25 TB
17. Stanford vs. Notre Dame, Notre Dame Stadium, South Bend, Ind., Sept. 29, 2018: 7.19 TB
18. (tie) Southern California vs. Notre Dame, Notre Dame Stadium, South Bend, Ind., Oct. 21, 2017: 7.0 TB
Arkansas State vs. Nebraska, Memorial Stadium, Lincoln, Neb., Sept 2, 2017: Wi-Fi: 7.0 TB
19. WrestleMania 32, AT&T Stadium, Arlington, Texas, April 3, 2016: Wi-Fi: 6.77 TB
20. Wisconsin vs. Nebraska, Memorial Stadium, Lincoln, Neb., Oct. 7, 2017: Wi-Fi: 6.3 TB
21. Super Bowl 49, University of Phoenix Stadium, Glendale, Ariz., Feb. 1, 2015: Wi-Fi: 6.23 TB

AT&T launching 5G-powered ‘fan experiences’ at AT&T Stadium for Cowboys opener

Dallas fan in mobile action at AT&T Stadium (not using 5G). Photo: Phil Harvey, MSR

AT&T is launching what it calls ‘5G experiences’ for fans at AT&T Stadium on Sunday during the Dallas Cowboys’ NFL home opener, including some augmented-reality experiences that will let fans take selfies with huge-sized virtual NFL players or dodge virtual tacklers in an AR-type game.

While the 5G network powering the experiences inside the stadium won’t be open or available for general use, AT&T said it will have Samsung Galaxy S10 5G phones on hand in several places around the venue for fans to test out the applications that AT&T claims “couldn’t be done wirelessly at this level before 5G.” And even though 5G networks are still a long ways away from being a mainstream reality for most wireless customers, you can expect the largest U.S. carriers to fight a 5G marketing battle all fall around football stadiums, especially at NFL venues where NFL partner Verizon is already at work installing 5G test networks for use this season. In fact, Verizon also has a press announcement out today about having installed 5G services in 13 NFL stadiums. So get ready, wireless types, it’s 5G season.

Here at MSR we will try to keep our heads above any claims of stadiums being the “first” 5G-enabled or 5G-ready until such networks are prevalent and available for any and all visitors. That being said, the activations planned by AT&T for Sunday’s Cowboys home opener against the New York Giants sound kind of cool, so if any MSR readers are on hand for the game please do try them out and send us a field report or at least a selfie or two.

According to an AT&T press release, the 5G-powered experiences available at the game Sunday will include a thing called “Hype Up Chants,” where fans will be able to see a 36-foot tall version of Cowboys players Dak Prescott and Ezekial Elliott among others by viewing them through the camera of a provided Samsung phone. Fans will also be able to record their own end zone dance next to virtual teammates, over a provided 3-D video again powered by the 5G network and a Samsung phone.

On the stadium’s east side fans will be able to “pose with the pros,” again recording a virtual video with players like Elliott in what AT&T is calling an “immersive column,” a setup connected to the 5G network via a Netgear Nighthawk 5G mobile hotspot. And at the stadium’s club level, another set of Samsung phones will be available to show off live player and team stats in a broadcast-like AR format, while other fans will get to play a virtual football game where they will dodge “virtual defensive robots,” who may or may not be more effective than the real humans on the football field.

We have an email in to AT&T to find out more details if possible, including any other vendors involved in AT&T’s millimeter-wave 5G setup inside its namesake arena. Stay tuned for updates as they become available. Below are some renderings of how the experiences are supposed to look.

The ‘Pose with the Pros’ column

The ‘Hype Up Chants’ look

Temporary courtside network helps set Final Four Wi-Fi records

A temporary under-seat Wi-Fi network helped bring connectivity to courtside seats at this year’s Final Four. Credit all photos: Paul Kapustka, MSR (click on any picture for a larger image)

One of the traditional characteristics of the Final Four is the yearly travel scramble of the fortunate fans and teams who have advanced to the championship weekend. Somehow, with only a week’s notice, plane flights, road trips and hotel rooms get scheduled and booked, leading to packed houses at college basketball’s biggest event.

On the stadium technology side, a similar last-minute fire drill happens just about every year as well, as the hosting venues reconfigure themselves to host basketball games inside cavernous buildings built mainly to hold football crowds. At this year’s NCAA Men’s Final Four at U.S. Bank Stadium in Minneapolis, the stadium tech team and partner AmpThink were able to quickly construct a temporary Wi-Fi network to cover the additional lower-bowl seating. The new capactity was part of a record-setting Wi-Fi network performance at the venue, with single-day numbers surpassing those from Super Bowl 52, held in the same building the year before.

The Wi-Fi numbers, both staggering and sobering especially to venues who are next in line for such bucket-list events, totaled 31.2 terabytes for the two days of game action, according to figures provided by the NCAA. For the semifinal games on Saturday April 6, U.S. Bank Stadium’s Wi-Fi network saw 17.8 TB of traffic, topping the 16.31 TB used during Super Bowl 52 on Feb. 4, 2018. The Saturday semifinals also set an attendance record for the venue, with 72,711 on hand, topping the 67,612 in attendance for Super Bowl 52.

During the championship game on April 8, U.S. Bank Stadium saw an additional 13.4 TB of data used on the Wi-Fi network, giving the venue three of the top four single-day Wi-Fi numbers we’ve reported, with this year’s mark of 24.05 TB at Super Bowl 53 in Atlanta the only bigger number. Saturday’s take rate at U.S. Bank Stadium, however, surpassed even the most-recent Super Bowl, with 51,227 unique users on the network, a 70 percent take rate.

‘Like building an arena network inside a football stadium’

Editor’s note: This report is from our latest STADIUM TECH REPORT, an in-depth look at successful deployments of stadium technology. Included with this report is a profile of the new Wi-Fi network at Allianz Field in St. Paul, Minn., and an in-depth research report on the new Wi-Fi 6 standard! DOWNLOAD YOUR FREE COPY now!

Switches for the temporary network were deployed under the seat scaffolding.

There’s no doubt that the temporary network installed by AmpThink and the U.S. Bank Stadium IT team contributed a great deal to the final Wi-Fi totals, with 250 access points installed in the additional seats. Like at other football venues that are transformed into basketball arenas, U.S. Bank Stadium had temporary seating installed on all four sides of the stadium, with temporary risers stretching down over football seating as well as with risers built behind both baskets. More seats were installed on the “floor” of the football field, right up to the elevated court set in the middle. The temporary APs, like the existing ones in the stadium, are from Cisco.

“There are a lot more moving parts to a Final Four than to a Super Bowl,” said David Kingsbury, director of IT for U.S. Bank Stadium, describing the difference in providing the networking and technical underpinnings for each event. While planning for the networks was obviously done far in advance, the actual buildout of the temporary Wi-Fi couldn’t even begin until the additional seating was in place, a task that finished just five days before the first game was played.

That’s when AmpThink deployed a staff of 12 workers to start connecting cables to APs and to switches, while also adding in another 700 wired network connections to the courtside areas for media internet and TV monitor connections. Like it does for every venue network it designs and deploys, AmpThink came to the stadium equipped with a wide assortment of lengths of pre-terminated cables, preparation that made the fast deployment possible.

“If we had to spin raw cable and terminate it on site, we never would have been able to finish in five days,” said AmpThink president Bill Anderson.

AmpThink’s previous experience in deploying such temporary networks under temporary seating — including at the previous year’s Final Four in San Antonio — taught the company that it would also need protection for under-seat switch deployments, to fend off the inevitable liquid spills from the seats above. That requirement was potentially even more necessary at U.S. Bank Stadium, since this year’s Final Four was the first to allow in-venue sales of alcoholic beverages.

Some temporary seats were deployed on top of existing lower bowl seats.

With some of the temporary seating installed over existing seating, there were 95 APs in the existing handrail-enclosure design that had to be turned off for the Final Four, according to Kingsbury. The 250 new APs added were all installed under the folding chairs, in enclosures that simply sat on the floor.

According to AmpThink’s Anderson, the company did learn a lesson at U.S. Bank Stadium — that it will, at future events, need to secure the actual enclosures since during the weekend curious fans opened a few of the boxes, with one AP disappearing, perhaps as an interesting IT souvenir.

In San Antonio, AmpThink had zip-tied the enclosures to chairs, which led to increased labor to detatch the devices during the post-event breakdown. While having no such measures at U.S. Bank led to a fast removal — AmpThink said it had removed all the temporary network elements just seven hours after the championship game confetti had settled — for next year’s Final Four AmpThink plans to at least zip-tie the enclosures shut so that fans can’t attempt any ad hoc network administration.

More APs for back of house operations

Another difference between the Final Four and the Super Bowl is the fact that four, not two, teams are in attendance for a full weekend, necessitating the need to set up temporary “work rooms” adjacent to each school’s locker room area. The media work center for the Final Four is also typically larger than that of a Super Bowl, again with more cities and their attendant media outlets on site thanks to there being four, not just two, teams involved.

A concourse speed test taken just after halftime of the final game.

“We had to cover a lot of places in the stadium that we don’t normally cover” with wireless and wired network access, Kingsbury said, saying that an additional 30 APs were needed for team rooms and the main media workspace, which were located on the field level of the stadium in the back hallways. An interesting note at U.S. Bank Stadium was that the yards and yards of fabric used as curtains to cover the clear-plastic roofing and wall areas was actually benefical to Wi-Fi operations, since it cut off some of the reflective interference caused by ETFE surfaces.

According to Kingsbury the final count of active APs for the Final Four was 1,414, a number reached by adding in the temporary APs while deducting the ones taken offline. Not included in the official NCAA traffic numbers was an additional 3 TB of traffic seen during the free-admission Friday practice sessions, when 36,000 fans visited the stadium, with 9,000 joining the Wi-Fi network.

From the official stats, the peak concurrent user number from Final Four Saturday of 31,141 was also an overall record, beating Super Bowl 53’s mark of 30,605. (Super Bowl 53 had 70,081 fans in attendance for the Feb. 3 game between the New England Patriots and the Los Angeles Rams.) The Wi-Fi network numbers for Monday’s championship game (won by Virginia 85-77 over Texas Tech in overtime) saw big numbers itself, with 13.4 TB of total data used, and 48,449 unique connections and 29,487 peak concurrent users (out of 72,062 in attendance). Monday’s game also produced a peak throughput number of 11.2 Gbps just after the game ended.

None of those totals could have been reached without the temporary network, which AmpThink’s Anderson compared to “building a 10,000-seat arena network inside a football stadium.” Next stop for a temporary Wi-Fi network is Mercedes-Benz Stadium in Atlanta, where the 2020 Final Four awaits.

This is what your football stadium looks like with a championship basketball game inside of it.

The temporary center-hung scoreboard was able to play video programming onto the court surface.

The NBA on TBS crew was courtside for the Final Four.

The secret to keeping your network operations room running? All kinds of energy inputs.

Federated Wireless completes ESC network for CBRS

One of the coastal sensors deployed in Federated Wireless’ ESC network. Credit: Federated Wireless

Federated Wireless announced Monday the completion of its environmental sensing capability (ESC) network, in what may be one of the final stepping stones toward commercial deployments of networks in the CBRS band.

Under the unique shared-spectrum licensing structure of the CBRS (Citizens Broadband Radio Service) band, a swath of 150 MHz in the 3.5 GHz range, an ESC network must be in place to sense when U.S. Navy ships are using the band. What Federated is announcing Monday is that its ESC network is ready to go, one of the final things needed before commercial customers of Federated’s products and services would be able to formally start operating their networks.

Though the Federated ESC network is still pending final FCC approval, Federated president and CEO Iyad Tarazi said in a phone interview that the company “expects to get the green light [from the FCC] in June,” with the commercial customer launches following soon behind. Federated, a pure-CBRS startup with $75 million in funding, also offers Spectrum Access Services (SAS), another part of the CBRS puzzle to help ensure that any network operators who want to play in the shared-space sandbox that is CBRS are only using spectrum chunks that are free of any higher-priority traffic.

According to Tarazi Federated already has 25 customers testing its gear and services in getting ready to launch CBRS networks, a yet-unnamed group of entities that Tarazi said includes wireless carriers, enterprise companies looking to launch private networks, and even some large public venues.

Private networks first for venues?

The early thinking on CBRS use cases for sports stadiums includes the possibility of using private LTE networks for sensitive internal operations like ticketing and concessions, or even for closed-system video streaming and push-to-talk voice support. In the longer-term future, CBRS has been touted as a potential way to provide a neutral-host network that could support fan-facing carrier offload much like a current distributed antenna system (DAS), but to get to that place will still likely require some more-advanced SIM technology to be developed and deployed in client devices like cellphones.

But the potential of a new, huge chunk of spectrum — and the possibility of teams, leagues and venues being able to own and operate their own networks — has created a wide range of interest in CBRS among sports operations. While many of those same entities already operate stadium Wi-Fi networks, CBRS’s support for the cellular LTE standard theoretically could support faster, more secure networks. However, the emerging Wi-Fi 6 standard may close the performance gaps between cellular and Wi-Fi in the near future; many networking observers now seem to agree that most venues will likely see a continued mix of Wi-Fi and cellular systems in the near future, possibly including CBRS.

Already, the PGA and NASCAR have live tests of CBRS networks underway, and the NFL and Verizon have kicked the ball around with CBRS tests, reportedly for possible sideline headset network use.

While CBRS will potentially get more interesting when the commercial deployments become public, if you’re a network geek you will be able to appreciate some of the work done by Federated to get its ESC network operational, starting with the deployments of sensors on coastal structures as varied as “biker bars and luxe beach resorts,” according to a Federated blog post.

Tarazi, who was most recently vice president of network development at Sprint, said the Federated ESC network is “triple redundant,” since losing just one sensor could render a big chunk of spectrum unusable.

“If you lose a sensor, you lose hundreds of square miles of [available] network,” Tarazi said. “That’s a big deal.”

And ensuring network availability is in part what Federated’s clients will be paying the company for, part of the puzzle that when put together will theoretically open up wireless spectrum at a much lower cost compared to purchasing licensed spectrum at auction. As one of the pick-and-shovel providers in the CBRS gold rush, Tarazi and Federated may be the only ESC game in town for a while, as the joint effort between CommScope and Google to build another ESC is not expected to be completed until later this year at the earliest.

“I feel like we’re at an inflection point now,” Tarazi said. “It feels good to be leading this wave.”

Commentary: Cheer, Cheer for old Wi-Fi

A hoops fan records action during the FInal Four at U.S. Bank Stadium. Credit all photos: Paul Kapustka, MSR (click on any picture for a larger image)

News item: Super Bowl 53 sees 24 terabytes of Wi-Fi data used.

Second news item: Final Four weekend sees 31.2 terabytes of Wi-Fi data used.

Even as people across the wireless industry seem ready to dig Wi-Fi’s grave, the view from here is not only is Wi-Fi’s imminent death greatly exaggerated, things may actually be heading in the other direction — Wi-Fi’s last-mile and in-building dominance may just be getting started.

The latest ironic put-down of Wi-Fi came in a recent Wall Street Journal article with the headline of “Cellphone Carriers Envision World Without Wi-Fi,” in which a Verizon executive calls Wi-Fi “rubbish.” While the article itself presents a great amount of facts about why Wi-Fi is already the dominant last-mile wireless carrier (and may just get stronger going forward) the article doesn’t talk at all about the Super Bowl, where Verizon itself basically turned to Wi-Fi to make sure fans at the big game who were Verizon customers could stay connected.

Wi-Fi speedtest from U.S. Bank Stadium during the Final Four championship game.

As readers of MSR know, the performance of the cellular DAS at Mercedes-Benz Stadium in Atlanta has been a question mark since its inception, and the emergence of competing lawsuits between lead contractor IBM and supplier Corning over its implementation means we may never learn publicly what really happened, and whether or not it was ever fixed. Though stadium tech execs and the NFL said publicly that the DAS was fine for the Super Bowl, Verizon’s actions perhaps spoke much louder — the carrier basically paid extra to secure part of the Wi-Fi network bandwidth for its own customers, and used autoconnect to get as many of its subscribers as it could onto the Wi-Fi network.

While we did learn the Wi-Fi statistics in detail — thanks to the fact that Wi-Fi numbers are controlled by the venue, not the carriers — it’s interesting to note that none of the four top cellular providers in the U.S. would give MSR a figure of how much cellular traffic they each saw in the stadium on Super Sunday. For the record, stadium officials said they saw 12.1 TB of data used on the Mercedes-Benz Stadium DAS on Super Bowl Sunday, a figure that represents the total traffic from all four carriers combined. But how that pie was split up will likely forever remain a mystery.

AT&T did provide a figure of 23.5 TB for Super Bowl traffic inside the venue as well as in a 2-mile radius around the stadium, and Sprint provided a figure (25 TB) but put even a less-measurable geographic boundary on it, meaning Sprint could have basically been reporting all traffic it saw anywhere inside the greater Atlanta city limits. Verizon and T-Mobile, meanwhile, both refused to report any Super Bowl cellular statistics at all.

An under-seat Wi-Fi AP placement in the end zone seating at the Final Four.

Verizon also did not reply to a question about how much traffic it saw on the Verizon-specific Wi-Fi SSID inside the venue. While we get the marketing reasons for not reporting disappointing stats (why willingly report numbers that make you look bad?), it seems disingenious at best for one Verizon executive (Ronan Dunne, executive vice president and president of Verizon Wireless) to call Wi-Fi “rubbish” when another part of the company is relying heavily on that same rubbish technology to make sure its customers can stay connected when the cellular network can’t keep up. One man’s trash, I guess, is another division’s treasure.

Wi-Fi 6 and more spectrum on the way

For venue owners and operators, the next few years are likely going to be filled with plenty of misinformation regarding the future of wireless. The big carriers, who pull in billions each quarter in revenue, are staking their near-term future on 5G, a label for a confusing mix of technologies and spectrum chunks that is unlikely to be cleared up anytime soon. Unlike the celluar industry change from 3G to 4G — a relatively straightforward progression to a new and unified type of technology — the change to 5G has already seen carriers willing to slap the marketing label on a different number of implementations, which bodes many headaches ahead for those in the venue space who have to figure out what will work best for their buildings and open spaces.

There’s also the imminent emergence of networks that will use the CBRS spectrum at 3.5 GHz, which will support communications using the same LTE technology used for 4G cellular. Though CBRS has its own challenges and hurdles to implementation, because it is backed by carriers and the carrier equipment-supply ecosystem, you can expect a blitz of 5G-type marketing to fuel its hype, with poor old Wi-Fi often the target for replacement.

While the Wi-Fi Alliance and other industry groups rallying around Wi-Fi might seem like the Rebel Alliance against a First Order dreadnought, if I’ve learned anything in my career of technology reporting it’s that you should never bet against open standards. I’ve been around long enough to see seemingly invincible empires based on proprietary schemes collapse and disappear under the relentless power of open systems and standards — like Ethernet vs. DEC or IBM networking protocols, and TCP/IP vs. Novell — to count out Wi-Fi in a battle, even against the cellular giants. In fact, with the improvements that are part of Wi-Fi 6 — known also as 802.11ax in the former parlance — Wi-Fi is supposed to eventually become more like LTE, with more secure connections and a better ability to support a roaming connection and the ability to connect more clients per access point. What happens then if LTE’s advantages go away?

With Wi-Fi 6 gear only now starting to arrive in the marketplace, proof still needs to be found that such claims can work in the real world, especially in the demanding and special-case world of wireless inside venues. But the same hurdles (and maybe even more) exist for CBRS and 5G technologies, with big unanswered questions about device support and the need for numerous amounts of antennas that are usually ignored in the “5G will take over the world soon” hype stories. I’d also add to that mix my wonder about where the time and talent will come from to install a whole bunch of new technologies that will require new learning curves; meanwhile, as far as I can tell the companies supporting Wi-Fi continue to add technology pros at ever-growing user and education conferences.

So as we ready for the inevitable challenge of sifting through cellular FUD and hype let’s have a cheer for good old Wi-Fi — for now the champion of the biggest data-demand days in venues, and maybe the leader for years to come.