AT&T launching 5G-powered ‘fan experiences’ at AT&T Stadium for Cowboys opener

Dallas fan in mobile action at AT&T Stadium (not using 5G). Photo: Phil Harvey, MSR

AT&T is launching what it calls ‘5G experiences’ for fans at AT&T Stadium on Sunday during the Dallas Cowboys’ NFL home opener, including some augmented-reality experiences that will let fans take selfies with huge-sized virtual NFL players or dodge virtual tacklers in an AR-type game.

While the 5G network powering the experiences inside the stadium won’t be open or available for general use, AT&T said it will have Samsung Galaxy S10 5G phones on hand in several places around the venue for fans to test out the applications that AT&T claims “couldn’t be done wirelessly at this level before 5G.” And even though 5G networks are still a long ways away from being a mainstream reality for most wireless customers, you can expect the largest U.S. carriers to fight a 5G marketing battle all fall around football stadiums, especially at NFL venues where NFL partner Verizon is already at work installing 5G test networks for use this season. In fact, Verizon also has a press announcement out today about having installed 5G services in 13 NFL stadiums. So get ready, wireless types, it’s 5G season.

Here at MSR we will try to keep our heads above any claims of stadiums being the “first” 5G-enabled or 5G-ready until such networks are prevalent and available for any and all visitors. That being said, the activations planned by AT&T for Sunday’s Cowboys home opener against the New York Giants sound kind of cool, so if any MSR readers are on hand for the game please do try them out and send us a field report or at least a selfie or two.

According to an AT&T press release, the 5G-powered experiences available at the game Sunday will include a thing called “Hype Up Chants,” where fans will be able to see a 36-foot tall version of Cowboys players Dak Prescott and Ezekial Elliott among others by viewing them through the camera of a provided Samsung phone. Fans will also be able to record their own end zone dance next to virtual teammates, over a provided 3-D video again powered by the 5G network and a Samsung phone.

On the stadium’s east side fans will be able to “pose with the pros,” again recording a virtual video with players like Elliott in what AT&T is calling an “immersive column,” a setup connected to the 5G network via a Netgear Nighthawk 5G mobile hotspot. And at the stadium’s club level, another set of Samsung phones will be available to show off live player and team stats in a broadcast-like AR format, while other fans will get to play a virtual football game where they will dodge “virtual defensive robots,” who may or may not be more effective than the real humans on the football field.

We have an email in to AT&T to find out more details if possible, including any other vendors involved in AT&T’s millimeter-wave 5G setup inside its namesake arena. Stay tuned for updates as they become available. Below are some renderings of how the experiences are supposed to look.

The ‘Pose with the Pros’ column

The ‘Hype Up Chants’ look

AT&T sees 2.5 TB of DAS traffic at men’s Final Four championship game

The concourses at U.S. Bank Stadium were well covered by DAS and Wi-Fi antennas for the recent Final Four. Credit: Paul Kapustka, MSR

In addition to the big Wi-Fi numbers seen at the NCAA men’s 2019 basketball championship game, AT&T said it saw 2.5 terabytes of data used by its customers on its DAS network at U.S. Bank Stadium in Minneapolis for the final game of the men’s Final Four weekend.

The neutral-host DAS in U.S. Bank Stadium, which is operated by Verizon, tested strong during MSR’s visit to the Final Four — we saw a mark of 37.5 Mbps on the download and 45.0 Mbps on the upload during the championship game, on a Verizon phone. Verizon, however, declined to provide any data totals from the Final Four.

In addition to its championship game numbers, AT&T said it saw 44.6 TB of data used on its networks in and around U.S. Bank Stadium for the entire men’s Final Four weekend.

Women’s Final Four sees 1.1 TB of DAS

At the NCAA women’s Final Four weekend in Tampa, Fla., AT&T said it saw a total of 1.1 TB of traffic used by its customers on the new MatSing Ball-powered DAS at Amalie Arena. That number includes traffic from both semifinal games as well as the championship game on April 7.

Colorado brings Wi-Fi and DAS to Folsom Field

Folsom Field at night. Credit: University of Colorado (click on any picture for a larger image)

There will be a change in the air at Folsom Field this fall, and not just from the team that new head coach Mel Tucker will lead onto the gridiron. For the first time, the mile-high atmosphere inside the University of Colorado’s historic venue will be filled with fan-facing Wi-Fi and cellular signals, thanks to new networks being installed this offseason by third-party host Neutral Connect Networks (NCN).

In a deal that will also bring Wi-Fi and a cellular DAS to the school’s basketball arena, NCN will use Cisco gear for the Wi-Fi network and JMA Wireless gear for the cellular networks. A centrally located head-end will serve both venues via fiber connections, some run through existing tunnels from the campus’ old steam-heating infrastructure.

Due to be live (UPDATE: Now CU says the networks will not be operational until later this fall) before the 2019 football season begins on Sept. 7 when CU hosts Nebraska, later this fall, the Wi-Fi network will use 550 APs in a mostly under-seat deployment at Folsom Field, where there are no overhangs over any of the seating areas. DAS deployment in Colorado’s historic football stadium — which first hosted games in 1924 — will use antennas pointing down from the stadium’s top edges, with some new flagpoles scheduled to help provide antenna-mounting locations.

While its incredibly picturesque location at the edge of the Rocky Mountains has historically made Folsom Field a fan-favorite place to visit (at least for photos), the lack of any comprehensive wireless coverage of any sort has produced some grumbling from Buffs fans in recent years. According to Matt Biggers, CU’s chief marketing officer and associate athletic director for external affairs, wireless coverage inside the sports venues has been a topic of internal research for more than 6 years.

“It was all about finding a partner and a financial model that works for us,” said Biggers. “It finally got to a point where it made sense to pull the trigger.”

Neutral host model appealing to schools

Editor’s note: This report is from our latest STADIUM TECH REPORT, an in-depth look at successful deployments of stadium technology. Included with this report is a profile of the Wi-Fi records set at Super Bowl 53, as well as a profile of Wi-Fi at Vivint Smart Home Arena in Salt Lake City! DOWNLOAD YOUR FREE COPY now!

The CU Events Center, home of Colorado hoops teams. Credit: Paul Kapustka, MSR

The model brought to CU is a classic neutral-host operation, where a provider like NCN (which bought the former sports-stadium practice from 5 Bars) will build a school’s Wi-Fi and DAS networks under a revenue-sharing deal with the school where the carriers help some with upfront payments and then provide payments over a long-term lease to operate on the DAS.

The neutral-host option is one good way for schools or teams with smaller budgets or lightly used facilities to bring connectivity to arenas. CU’s Folsom Field, for example, doesn’t see much use other than the six home games per football season. This year, the stadium will see big crowds beyond football only at a few events, including the Memorial Day Bolder Boulder 10K footrace (which ends inside the stadium), a Fourth of July fireworks celebration, and a couple of July concerts featuring the Dead & Company tour.

According to James Smith, vice president of carrier services for NCN, AT&T will be the anchor tenant on the DAS, and will be first to be operational. Verizon Wireless and T-Mobile, Smith said, are still negotiating long-term agreements but are expected to be on the DAS by 2020.

NCN [then under its old name of 5 Bars] negotiated a similar neutral-host deal with CU’s neighbor to the north, Colorado State University, for CSU’s new football stadium which opened in 2017. Now known as Canvas Stadium, the 41,000-seat venue had 419 total Wi-Fi access points when it opened, with approximately 250 of those used in the bowl seating area. Like CSU’s deployment, the Wi-Fi network at Folsom Field will use primarily under-seat AP deployments, mainly because the stadium’s horseshoe layout has no overhangs.

DAS gear already installed in the CU Events Center

According to NCN’s Smith, the current plan sees a deployment of 550 APs in Folsom Field, with another 70 APs in the basketball arena, the CU Events Center. Both venues’ networks will be served by a central head-end room located in an old telephone PBX space near the center of campus. Fiber links will run from there to both Folsom Field and the Events Center.

At Folsom, the NCN team will have a long list of deployment challenges, mainly having to navigate the construction particulars of a stadium that has been gradually expanded and added onto over the years.

“Sometimes it’s hard to know what’s behind a brick,” said NCN director of program management Bryan Courtney, speaking of existing infrastructure that has been around for decades. Smith said the Folsom Field DAS will make use of overhead antennas, including some that will require new flagpole-type structures that will need to match Folsom Field’s architectural heritage.

Basketball arena is all top-down

At the 11,064-seat CU Events Center, formerly known as the Coors Events Center, deployment of both Wi-Fi and DAS will be somewhat easier, as all the gear servicing the seating area will be suspended from the catwalks. With the main concourse at stadium entry level and all the seats in a single rectangular bowl flowing down from there, the ceiling is close enough for good top-down coverage for both Wi-Fi and celluar, NCN’s Smith said.

The Golden Buffalo Marching Band on a CU game day. Credit: Paul Kapustka, MSR

Though deployment of both networks in the Events Center is currently underway, neither will be active until after the current college basketball season is completed. However, the Events Center stays somewhat more busy than the football stadium, with events like local high school graduations and other special events (like a Republican Party debate in 2015) making use of the space. Both networks should be fully up and running by the next basketball season, according to NCN.

Unlike some other universities that are aggressively pursuing digital fan-connection strategies, CU’s Biggers said the school will start slowly with its fan-facing networks, making sure the experience is a solid one before trying too hard.

“We’re pretty conservative, and this is a complicated project and we want to make sure we get it right,” said Biggers. Though Biggers said CU fans haven’t been extremely vocal about connectivity issues inside the sports venues, he does admit to hearing about “some frustration” about signals in some areas of the stadium (which until now has only been served by a couple of dedicated macro antennas from the outside).

“There’s definitely a hunger [for wireless service],” Biggers said.

On the business side, Biggers said CU will also be taking more time to evaluate any additions to its game-day digital operations. Though CU recently introduced a mobile-only “buzzer beater” basketball ticket package that offered discounted passes that would deliver an assigned seat to a device 24 hours before game time, Biggers said that for football, a longtime paper-ticket tradition for season ticket holders would likely stay in place.

Colorado will also “re-evaluate” its game-day mobile application strategy, Biggers said, with the new networks in mind. “But the real game-changer for us is data collection,” he said. “We’re most excited about having data to better serve the fans.”

Commentary: Cheer, Cheer for old Wi-Fi

A hoops fan records action during the FInal Four at U.S. Bank Stadium. Credit all photos: Paul Kapustka, MSR (click on any picture for a larger image)

News item: Super Bowl 53 sees 24 terabytes of Wi-Fi data used.

Second news item: Final Four weekend sees 31.2 terabytes of Wi-Fi data used.

Even as people across the wireless industry seem ready to dig Wi-Fi’s grave, the view from here is not only is Wi-Fi’s imminent death greatly exaggerated, things may actually be heading in the other direction — Wi-Fi’s last-mile and in-building dominance may just be getting started.

The latest ironic put-down of Wi-Fi came in a recent Wall Street Journal article with the headline of “Cellphone Carriers Envision World Without Wi-Fi,” in which a Verizon executive calls Wi-Fi “rubbish.” While the article itself presents a great amount of facts about why Wi-Fi is already the dominant last-mile wireless carrier (and may just get stronger going forward) the article doesn’t talk at all about the Super Bowl, where Verizon itself basically turned to Wi-Fi to make sure fans at the big game who were Verizon customers could stay connected.

Wi-Fi speedtest from U.S. Bank Stadium during the Final Four championship game.

As readers of MSR know, the performance of the cellular DAS at Mercedes-Benz Stadium in Atlanta has been a question mark since its inception, and the emergence of competing lawsuits between lead contractor IBM and supplier Corning over its implementation means we may never learn publicly what really happened, and whether or not it was ever fixed. Though stadium tech execs and the NFL said publicly that the DAS was fine for the Super Bowl, Verizon’s actions perhaps spoke much louder — the carrier basically paid extra to secure part of the Wi-Fi network bandwidth for its own customers, and used autoconnect to get as many of its subscribers as it could onto the Wi-Fi network.

While we did learn the Wi-Fi statistics in detail — thanks to the fact that Wi-Fi numbers are controlled by the venue, not the carriers — it’s interesting to note that none of the four top cellular providers in the U.S. would give MSR a figure of how much cellular traffic they each saw in the stadium on Super Sunday. For the record, stadium officials said they saw 12.1 TB of data used on the Mercedes-Benz Stadium DAS on Super Bowl Sunday, a figure that represents the total traffic from all four carriers combined. But how that pie was split up will likely forever remain a mystery.

AT&T did provide a figure of 23.5 TB for Super Bowl traffic inside the venue as well as in a 2-mile radius around the stadium, and Sprint provided a figure (25 TB) but put even a less-measurable geographic boundary on it, meaning Sprint could have basically been reporting all traffic it saw anywhere inside the greater Atlanta city limits. Verizon and T-Mobile, meanwhile, both refused to report any Super Bowl cellular statistics at all.

An under-seat Wi-Fi AP placement in the end zone seating at the Final Four.

Verizon also did not reply to a question about how much traffic it saw on the Verizon-specific Wi-Fi SSID inside the venue. While we get the marketing reasons for not reporting disappointing stats (why willingly report numbers that make you look bad?), it seems disingenious at best for one Verizon executive (Ronan Dunne, executive vice president and president of Verizon Wireless) to call Wi-Fi “rubbish” when another part of the company is relying heavily on that same rubbish technology to make sure its customers can stay connected when the cellular network can’t keep up. One man’s trash, I guess, is another division’s treasure.

Wi-Fi 6 and more spectrum on the way

For venue owners and operators, the next few years are likely going to be filled with plenty of misinformation regarding the future of wireless. The big carriers, who pull in billions each quarter in revenue, are staking their near-term future on 5G, a label for a confusing mix of technologies and spectrum chunks that is unlikely to be cleared up anytime soon. Unlike the celluar industry change from 3G to 4G — a relatively straightforward progression to a new and unified type of technology — the change to 5G has already seen carriers willing to slap the marketing label on a different number of implementations, which bodes many headaches ahead for those in the venue space who have to figure out what will work best for their buildings and open spaces.

There’s also the imminent emergence of networks that will use the CBRS spectrum at 3.5 GHz, which will support communications using the same LTE technology used for 4G cellular. Though CBRS has its own challenges and hurdles to implementation, because it is backed by carriers and the carrier equipment-supply ecosystem, you can expect a blitz of 5G-type marketing to fuel its hype, with poor old Wi-Fi often the target for replacement.

While the Wi-Fi Alliance and other industry groups rallying around Wi-Fi might seem like the Rebel Alliance against a First Order dreadnought, if I’ve learned anything in my career of technology reporting it’s that you should never bet against open standards. I’ve been around long enough to see seemingly invincible empires based on proprietary schemes collapse and disappear under the relentless power of open systems and standards — like Ethernet vs. DEC or IBM networking protocols, and TCP/IP vs. Novell — to count out Wi-Fi in a battle, even against the cellular giants. In fact, with the improvements that are part of Wi-Fi 6 — known also as 802.11ax in the former parlance — Wi-Fi is supposed to eventually become more like LTE, with more secure connections and a better ability to support a roaming connection and the ability to connect more clients per access point. What happens then if LTE’s advantages go away?

With Wi-Fi 6 gear only now starting to arrive in the marketplace, proof still needs to be found that such claims can work in the real world, especially in the demanding and special-case world of wireless inside venues. But the same hurdles (and maybe even more) exist for CBRS and 5G technologies, with big unanswered questions about device support and the need for numerous amounts of antennas that are usually ignored in the “5G will take over the world soon” hype stories. I’d also add to that mix my wonder about where the time and talent will come from to install a whole bunch of new technologies that will require new learning curves; meanwhile, as far as I can tell the companies supporting Wi-Fi continue to add technology pros at ever-growing user and education conferences.

So as we ready for the inevitable challenge of sifting through cellular FUD and hype let’s have a cheer for good old Wi-Fi — for now the champion of the biggest data-demand days in venues, and maybe the leader for years to come.

Amalie Arena’s MatSing-powered DAS ready for Women’s Final Four

MatSing ball antennas seen behind championship banners at Amalie Arena. Credit all photos: MatSing (click on any photo for a larger image)

The new DAS at Amalie Arena in Tampa, which uses 52 MatSing ball antennas, is fully operational and ready for this weekend’s NCAA Women’s Final Four, which starts on Friday.

According to AT&T, which is running and operating the new DAS, the new network “is officially on-air,” after going through some test runs during Tampa Bay Lightning NHL games. According to one informer, AT&T CEO John Donovan (an old friend of MSR) attended a recent hockey game at Amalie and gave a big thumbs-up to the new DAS, which is the biggest known installation of the unique MatSing antennas, which are basically huge spheres with lots of directional cellular antennas inside.

A press release from AT&T about the new DAS claims that has boosted cellular capacity inside Amalie Arena by 400 percent from last year. The new DAS also uses Corning ONE gear on the back end.

MSR will be in Minneapolis this weekend at the other Final Four, so if you are in Tampa for the women’s tourney take a speedtest or two on cellular and let us know what you see. We are watching the DAS deployment at Amalie Arena carefully since it is our guess that it won’t be the last you hear of MatSing deployments this year. Some more photos from the Amalie Arena MatSing deployment below.

Super Bowl 53 smashes Wi-Fi record with 24 TB of traffic at Mercedes-Benz Stadium

Super Bowl 53 at Mercedes-Benz Stadium in Atlanta. Credit: Mercedes-Benz Stadium.

Super Bowl 53 at Atlanta’s Mercedes-Benz Stadium rewrote the record book when it comes to single-day stadium Wi-Fi, with 24.05 terabytes of traffic seen on the stadium’s network. That is a huge leap from the official 16.31 TB seen at last year’s Super Bowl 52 in Minneapolis at U.S. Bank Stadium.

According to official statistics provided by Extreme Networks, new high-water marks were set last Sunday in every category of network measurement, including an amazing 48,845 unique users on the network, a take rate of 69 percent out of the 70,081 who were in attendance to watch the New England Patriots beat the Los Angeles Rams 13-3. The average Wi-Fi data use per connected fan also set a new record, with the per-fan mark of 492.3 megabytes per user eclipsing last year’s mark of 407.4.

With some 1,800 APs installed inside Mercedes-Benz Stadium — with most of the bowl seating APs located underneath the seats — the Wi-Fi gear from Aruba, a Hewlett Packard Enterprise company, in a design from AmpThink, also saw a peak throughput rate of 13.06 Gbps, seen at halftime. The peak number of concurrent network users, 30,605, also took place during the halftime show, which featured the band Maroon 5 (whose show played to mixed reviews). While Mobile Sports Report deemed the network ready to rock in a December visit, the record-breaking statistics are sure to give pause to any venue in line to host the Super Bowl in the next few years. No pressure, Miami!

An under-seat Wi-Fi enclosure at Mercedes-Benz Stadium. Credit: Paul Kapustka, MSR

Extreme Networks, which provides Wi-Fi analysis in a sponsorship deal with the NFL, had a great list of specific details from the event, which you can also peruse in the fine infographic that the company produces after each Super Bowl. Here are some of the top-line stats:

Need proof that people still watch the game? Out of the 24.05 TB total, Extreme said 9.99 TB of the traffic took place before the kickoff, followed by 11.11 TB during the game and halftime, and another 2.95 TB after the game concluded.

On the most-used apps side, Extreme said the most-used social apps were, in order of usage, Facebook, Instagram, Twitter, Snapchat and Bitmoji; on the streaming side, the most-used apps were iTunes, YouTube, Airplay, Spotify and Netflix. The most-used sporting apps by fans at the game were, in order, ESPN, NFL, the Super Bowl LIII Fan Mobile Pass (the official app for the game), CBS Sports (which broadcast the game live) and Bleacher Report.

While Super Bowl Wi-Fi traffic has grown significantly each year since we started reporting the statistics, one reason for the bigger leap this year may have been due to the fact that Verizon Wireless used its sponsorship relationship with the NFL to acquire its own SSID on the Mercedes-Benz Stadium Wi-Fi network.

A mini-IDF ‘closet’ above a Wi-Fi AP at Mercedes-Benz Stadium. Credit: Paul Kapustka, MSR

According to Andrea Caldini, Verizon vice president for networking engineering in the Eastern U.S., Verizon had “autoconnect in play,” which meant that any Verizon customer with Wi-Fi active on their devices would be switched over to Wi-Fi when inside the stadium.

“It’s going to be a good offload for us,” said Caldini in a phone interview ahead of the Super Bowl. While Verizon claimed this week to see record cellular traffic as well during Super Bowl Sunday, a spokesperson said Verizon will no longer release such statistics from the game.

As an interesting business note when it comes to sponsorships, the regular Mercedes-Benz Stadium free Wi-Fi SSID, normally ATTWiFi thanks to AT&T’s sponsorship of the network backbone, was switched to #SBWiFi for the big game. Verizon customers were able to connect via a Verizon-specific SSID.

New records list below! Anyone with a missing game that makes the list, send your info in!

THE MSR TOP 18 FOR WI-FI

1. Super Bowl 53, Mercedes-Benz Stadium, Atlanta, Ga., Feb. 3, 2019: Wi-Fi: 24.05 TB
2. Super Bowl 52, U.S. Bank Stadium, Minneapolis, Minn., Feb. 4, 2018: Wi-Fi: 16.31 TB
3. 2018 College Football Playoff Championship, Alabama vs. Georgia, Mercedes-Benz Stadium, Atlanta, Ga., Jan. 8, 2018: Wi-Fi: 12.0 TB*
4. Super Bowl 51, NRG Stadium, Houston, Feb. 5, 2017: Wi-Fi: 11.8 TB
5. Atlanta Falcons vs. Philadelphia Eagles, Lincoln Financial Field, Philadelphia, Pa., Sept. 6, 2018: Wi-Fi: 10.86 TB
6. Super Bowl 50, Levi’s Stadium, Santa Clara, Calif., Feb. 7, 2016: Wi-Fi: 10.1 TB
7. Taylor Swift Reputation Tour, Gillette Stadium, Foxborough, Mass., July 27, 2018: Wi-Fi: 9.76 TB
8. Minnesota Vikings vs. Philadelphia Eagles, NFC Championship Game, Lincoln Financial Field, Philadelphia, Pa., Jan. 21, 2018: Wi-Fi: 8.76 TB
9. Jacksonville Jaguars vs. New England Patriots, AFC Championship Game, Gillette Stadium, Foxborough, Mass., Jan. 21, 2018: Wi-Fi: 8.53 TB
10. Taylor Swift Reputation Tour, Broncos Stadium at Mile High, May 25, 2018: Wi-Fi: 8.1 TB
11. Kansas City Chiefs vs. New England Patriots, Gillette Stadium, Foxborough, Mass., Sept. 7, 2017: Wi-Fi: 8.08 TB
12. SEC Championship Game, Alabama vs. Georgia, Mercedes-Benz Stadium, Atlanta, Ga., Dec. 1, 2018: Wi-Fi: 8.06 TB*
13. Green Bay Packers vs. Dallas Cowboys, Divisional Playoffs, AT&T Stadium, Arlington, Texas, Jan. 15, 2017: Wi-Fi: 7.25 TB
14. Stanford vs. Notre Dame, Notre Dame Stadium, South Bend, Ind., Sept. 29, 2018: 7.19 TB
15. (tie) Southern California vs. Notre Dame, Notre Dame Stadium, South Bend, Ind., Oct. 21, 2017: 7.0 TB
Arkansas State vs. Nebraska, Memorial Stadium, Lincoln, Neb., Sept 2, 2017: Wi-Fi: 7.0 TB
16. WrestleMania 32, AT&T Stadium, Arlington, Texas, April 3, 2016: Wi-Fi: 6.77 TB
17. Wisconsin vs. Nebraska, Memorial Stadium, Lincoln, Neb., Oct. 7, 2017: Wi-Fi: 6.3 TB
18. Super Bowl 49, University of Phoenix Stadium, Glendale, Ariz., Feb. 1, 2015: Wi-Fi: 6.23 TB

* = pending official exact data