Federated Wireless completes ESC network for CBRS

One of the coastal sensors deployed in Federated Wireless’ ESC network. Credit: Federated Wireless

Federated Wireless announced Monday the completion of its environmental sensing capability (ESC) network, in what may be one of the final stepping stones toward commercial deployments of networks in the CBRS band.

Under the unique shared-spectrum licensing structure of the CBRS (Citizens Broadband Radio Service) band, a swath of 150 MHz in the 3.5 GHz range, an ESC network must be in place to sense when U.S. Navy ships are using the band. What Federated is announcing Monday is that its ESC network is ready to go, one of the final things needed before commercial customers of Federated’s products and services would be able to formally start operating their networks.

Though the Federated ESC network is still pending final FCC approval, Federated president and CEO Iyad Tarazi said in a phone interview that the company “expects to get the green light [from the FCC] in June,” with the commercial customer launches following soon behind. Federated, a pure-CBRS startup with $75 million in funding, also offers Spectrum Access Services (SAS), another part of the CBRS puzzle to help ensure that any network operators who want to play in the shared-space sandbox that is CBRS are only using spectrum chunks that are free of any higher-priority traffic.

According to Tarazi Federated already has 25 customers testing its gear and services in getting ready to launch CBRS networks, a yet-unnamed group of entities that Tarazi said includes wireless carriers, enterprise companies looking to launch private networks, and even some large public venues.

Private networks first for venues?

The early thinking on CBRS use cases for sports stadiums includes the possibility of using private LTE networks for sensitive internal operations like ticketing and concessions, or even for closed-system video streaming and push-to-talk voice support. In the longer-term future, CBRS has been touted as a potential way to provide a neutral-host network that could support fan-facing carrier offload much like a current distributed antenna system (DAS), but to get to that place will still likely require some more-advanced SIM technology to be developed and deployed in client devices like cellphones.

But the potential of a new, huge chunk of spectrum — and the possibility of teams, leagues and venues being able to own and operate their own networks — has created a wide range of interest in CBRS among sports operations. While many of those same entities already operate stadium Wi-Fi networks, CBRS’s support for the cellular LTE standard theoretically could support faster, more secure networks. However, the emerging Wi-Fi 6 standard may close the performance gaps between cellular and Wi-Fi in the near future; many networking observers now seem to agree that most venues will likely see a continued mix of Wi-Fi and cellular systems in the near future, possibly including CBRS.

Already, the PGA and NASCAR have live tests of CBRS networks underway, and the NFL and Verizon have kicked the ball around with CBRS tests, reportedly for possible sideline headset network use.

While CBRS will potentially get more interesting when the commercial deployments become public, if you’re a network geek you will be able to appreciate some of the work done by Federated to get its ESC network operational, starting with the deployments of sensors on coastal structures as varied as “biker bars and luxe beach resorts,” according to a Federated blog post.

Tarazi, who was most recently vice president of network development at Sprint, said the Federated ESC network is “triple redundant,” since losing just one sensor could render a big chunk of spectrum unusable.

“If you lose a sensor, you lose hundreds of square miles of [available] network,” Tarazi said. “That’s a big deal.”

And ensuring network availability is in part what Federated’s clients will be paying the company for, part of the puzzle that when put together will theoretically open up wireless spectrum at a much lower cost compared to purchasing licensed spectrum at auction. As one of the pick-and-shovel providers in the CBRS gold rush, Tarazi and Federated may be the only ESC game in town for a while, as the joint effort between CommScope and Google to build another ESC is not expected to be completed until later this year at the earliest.

“I feel like we’re at an inflection point now,” Tarazi said. “It feels good to be leading this wave.”

PGA Tour gives CBRS a test

Volunteers track shots with lasers on the fairways of PGA Tour tournaments. Credit: Chris Condon/PGA TOUR (click on any photo for a larger image)

CBRS technology doesn’t need spikey shoes to gain traction on the fairways, if early results from technology tests undertaken by the PGA Tour at courses around the country are any indication.

A recent 14-state test run by the top professional U.S. golf tour tapped the newly designated Citizens Broadband Radio Service (CBRS), which comprises 150 MHz of spectrum in the 3.5 GHz band. Golf courses, which typically lack the dense wireless coverage of more populated urban areas, are easily maxed out when thousands of fans show up on a sunny weekend to trail top-ranked players like Brooks Koepka, Rory McIlroy or perennial favorite Tiger Woods.

To cover the bandwidth needs of tournaments, the PGA Tour has over time used a mix of technologies, many portable in nature given the short stay of a tournament at any given course. Like Wi-Fi or temporary cellular infrastructures used in the past, the hope is that CBRS will help support public safety, scoring and broadcast applications required to keep its events operating smoothly and safely, according to the PGA Tour.

“We’re looking at replacing our 5 GHz Wi-Fi solution with CBRS so we can have more control over service levels,” said Steve Evans, senior vice president of information systems for the PGA Tour. Unlike 5 GHz Wi-Fi, CBRS is licensed spectrum and less prone to interference the Tour occasionally experienced.

CBRS will also make a big difference with the Tour’s ShotLink system, a wireless data collection system used by the PGA Tour that gathers data on every shot made during competition play – distance, speed and other scoring data.

“CBRS would help us get the data off the golf course faster” than Wi-Fi can, Evans explained. “And after more than 15 months of testing we’ve done so far, CBRS has better coverage per access point than Wi-Fi.”

The preliminary results are so encouraging that the Tour is also looking to CBRS to carry some of its own voice traffic and has already done some testing there. “We need to have voice outside the field of play, and we think CBRS can help solve that problem,” Evans added.

But as an emerging technology, it’s important to acknowledge the limitations of CBRS. Compatible handsets aren’t widely available; the PGA Tour has been testing CBRS prototypes from Essential. Those units only operate in CBRS bands 42 and 43; a third, band 48, is expected to be added by device makers sometime in the first half of 2019.

“We’re waiting for the phones to include band 48 and then we’ll test several,” Evans told Mobile Sports Report. “I expect Android would move first and be very aggressive with it.”

CBRS gear mounted on temporary poles at a PGA Tour event. Credit: PGA Tour

The PGA Tour isn’t the only sports entity looking at CBRS’s potential. The National Football League is testing coach-to-coach and coach-to-player communications over CBRS at all the league’s stadiums; the NBA’s Sacramento
Kings are testing it at Golden 1 Center with Ruckus; NASCAR has been testing video transmission from inside cars using CBRS along with Nokia and Google, and the ISM Raceway in Phoenix, Ariz., recently launched a live CBRS network that it is currently using for backhaul to remote parking lot Wi-Fi hotspots.

Outside of sports and entertainment, FedEx, the Port of Los Angeles and General Electric are jointly testing CBRS in Southern California. Love Field Airport in Dallas is working with Boingo and Ruckus in a CBRS trial; service provider Pavlov Media is testing CBRS near the University of Illinois Champaign-Urbana with Ruckus gear. Multiple service providers from telecom, cable and wireless are also testing the emerging technology’s potential all around the country.

Where CBRS came from, where it’s going

Editor’s note: This profile is from our latest STADIUM TECH REPORT, an in-depth look at successful deployments of stadium technology. Included with this report is a profile of the new game-day digital fan engagement strategy at Texas A&M, as well as a profile of Wi-Fi at Merceds-Benz Stadium, home of Super Bowl LIII in Atlanta! DOWNLOAD YOUR FREE COPY now!

CBRS has undergone a 6-year gestation period; 150 MHz worth of bandwidth was culled from the 3.5 GHz spectrum, which must be shared (and not interfere) with U.S. government radar operations already operating in that same spectrum.

From a regulatory perspective, CBRS’s experimental status is expected to give way to full commercial availability in the near future. Consequently, wireless equipment vendors have been busy building – and marketing – CBRS access points and antennas for test and commercial usage. But entities like the PGA Tour have already identified the benefits and aren’t waiting for the FCC to confer full commercial status on the emerging wireless technology.

CBRS equipment vendors and would-be service providers were hard to miss at last fall’s Mobile World
Congress Americas meeting in Los Angeles. More than 20 organizations – all part of the CBRS Alliance – exhibited their trademarked OnGo services, equipment and software in a day-long showcase event. (Editor’s note: “OnGo” is the alliance’s attempt to “brand” the service as something more marketable than the geeky CBRS acronym).

The CBRS Alliance envisions five potential use cases of the technology, according to Dave Wright, alliance president and director of regulatory affairs and network standards at Ruckus:
• Mobile operators that want to augment capacity of their existing spectrum
• Cable operators looking to expand into wireless services instead of paying a mobile virtual network operator (MVNO)
• Other third-party providers looking to offer fixed broadband services
• Enterprise and industrial applications: extending or amplifying wireless in business parks and remote locations; Internet of Things data acquisition.
• Neutral host capabilities, which some have likened to LTE roaming, an important development as 5G cellular services ramp up.

Previously, if customers wanted to extend cell coverage inside a building or a stadium, their best option was often distributed antenna systems (DAS). But DAS is complicated, expensive and relies on carrier participation, according to Wright. “Carriers also want to make sure your use of their spectrum doesn’t interfere with their macro spectrum nearby,” he added.

CBRS uses discrete spectrum not owned by a mobile operator, allowing an NFL franchise, for example, to buy CBRS radios and deploy them around the stadium, exclusively or shared, depending on their requirements and budgets.

More CBRS antenna deployment. Credit: PGA Tour

On a neutral host network, a mobile device would query the LTE network to see which operations are supported. The device would then exchange credentials with the mobile carriers – CBRS and cellular – then permissions are granted, the user is authenticated, and their usage info gets passed back to the carrier, Wright explained.

With the PGA Tour tests, the Essential CBRS devices get provisioned on the network, then connect to the CBRS network just like a cell phone connects to public LTE, Evans explained. The Tour’s custom apps send collected data back to the Tour’s network via the CBRS access point, which is connected to temporary fiber the Tour installs. And while some of Ruckus’s CBRS access points also support Wi-Fi, the Tour uses only the CBRS. “When we’re testing, we’re not turning Wi-Fi on if it’s there,” Evans clarified.

While the idea of “private LTE” networks supported by CBRS is gaining lots of headline time, current deployments would require a new SIM card for any devices wanting to use the private CBRS network, something that may slow down deployments until programmable SIM cards move from good idea to reality. But CBRS networks could also be used for local backhaul, using Wi-Fi to connect to client devices, a tactic currently being used at ISM Raceway in Phoenix.

“It’s an exciting time… CBRS really opens up a lot of new opportunities,” Wright added. “The PGA Tour and NFL applications really address some unmet needs.”

CBRS on the Fairways

Prior to deploying CBRS access points at a location, the PGA Tour surveys the tournament course to create a digital image of every hole, along with other data to calculate exact locations and distances between any two coordinates, like the tee box and the player’s first shot or the shot location and the location of the hole. The survey also helps the Tour decide how and where to place APs on the course.

Courses tend to be designed in two different ways, according to the PGA Tour’s Evans. With some courses, the majority number of holes are adjacent to each other and create a more compact course; other courses are routed through neighborhoods and may snake around, end-to-end.

“In the adjacent model, which is 70 percent of the courses we play, we can usually cover the property with about 10 access points,” Evans explained.

Adjacent-style courses where the PGA Tour has tested CBRS include Ridgewood Country Club in Paramus, N.J.; Aronimink Golf Club in Newtown Square, Penn.; and East Lake Golf Club in Atlanta.

In the second model, where the holes are strung back to back, the PGA Tour may have to deploy as many as 18 or 20 APs to get the coverage and throughput it needs. That’s the configuration used during a recent tournament at the TPC Summerlin course in Las Vegas, Nev., Evans told Mobile Sports Report.

On the course, CBRS APs get attached to some kind of structure where possible, Evans added. “Where that doesn’t make sense, we have portable masts we use – a tripod with a pole that goes up 20 feet,” he said. The only reason he’d relocate an AP once a tournament began is if it caused a problem with the competition or fan egress. “We’re pretty skilled at avoiding those issues,” he said.

A handful of PGA Tour employees operates its ShotLink system, which also relies on an army of volunteers – as many as 350 at each tournament – who help with data collection and score updates (that leader board doesn’t refresh itself!). “There’s a walker with each group, recording data about each shot. There’s technology for us on each fairway and green, and even in the ball itself, as the ball hits the green and as player hits putts,” said Evans.

The walker-volunteers relay their data back to a central repository; from there, ShotLink data then gets sent to PGA Tour management and is picked up by a variety of organizations from onsite TV broadcast partners; the pgatour.com Website; players, coaches and caddies; print media; and mobile devices.

In addition to pushing PGA Tour voice traffic over on to CBRS, the organization is also looking for the technology to handle broadcast video. “We think broadcast video capture could become a [CBRS] feature,” Evans said. The current transport method, UHF video, is a low-latency way to get video back to a truck where it can be uploaded for broadcast audiences.

A broadcast program produced by the organization, PGA Tour Live, follows two groups on the course; each group has four cameras and producers cut between each group and each camera. That video needs to be low latency, high reliability, but is expensive due to UHF transmission.

Once 5G standards are created for video capture, the PGA Tour could use public LTE to bond a number of cell signals together. Unfortunately, that method has higher latency. “It’s fine for replay but not for live production,” Evans said, but is expected to eventually improve performance-wise. “The idea is eventually to move to outside cameras with CBRS and then use [CBRS] for data collection too,” he added. “If we could take out the UHF cost, it would be significant for us.”

In the meantime, the Tour will continue to rely largely on Cisco-Meraki Wi-Fi and use Wi-Fi as an alternate route if something happens to CBRS, Evans said. “But we expect CBRS to be primary and used 99 percent of the time.”

New Report: Texas A&M scores with new digital fan-engagement strategy

In the short history of in-stadium mobile fan engagement, a team or stadium app has been the go-to strategy for many venue owners and operators. But what if that strategy is wrong?

That question gets an interesting answer with the lead profile in our most recent STADIUM TECH REPORT, the Winter 2018-19 issue! These quarterly long-form reports are designed to give stadium and large public venue owners and operators, and digital sports business executives a way to dig deep into the topic of stadium technology, via exclusive research and profiles of successful stadium technology deployments, as well as news and analysis of topics important to this growing market.

Leading off for this issue is an in-depth report on a new browser-based digital game day program effort launched this football season at Texas A&M, where some longtime assumptions about mobile apps and fan engagement were blown apart by the performance of the Aggies’ new project. A must read for all venue operations professionals! We also have in-person visits to Atlanta’s Mercedes-Benz Stadium and the renovated State Farm Arena, the venue formerly known as Philips Arena. A Q&A with NFL CIO Michelle McKenna-Doyle and a report on a CBRS network test by the PGA round out this informative issue! DOWNLOAD YOUR REPORT today!

We’d like to take a quick moment to thank our sponsors, which for this issue include Mobilitie, JMA Wireless, Corning, Huber+Suhner, Boingo, Oberon, MatSing, Neutral Connect Networks, Everest Networks, and ExteNet Systems. Their generous sponsorship makes it possible for us to offer this content free of charge to our readers. We’d also like to welcome readers from the Inside Towers community, who may have found their way here via our ongoing partnership with the excellent publication Inside Towers. We’d also like to thank the SEAT community for your continued interest and support.

As always, we are here to hear what you have to say: Send me an email to kaps@mobilesportsreport.com and let us know what you think of our STADIUM TECH REPORT series.

CommScope buying Arris (and Ruckus) for $7.4 B

CommScope announced today its intent to acquire Arris International for $7.4 billion, a move that would also bring in Wi-Fi vendor Ruckus, an asset that could help turn CommScope into a single-stop shop for large public venue connectivity products and services.

Financial details are available in the official announcement, but what will be more interesting will be how CommScope now markets itself to large public venues, like stadiums, for connectivity solutions. Previously known for its cellular distributed antenna system (DAS) infrastructure and back-end operations, with Ruckus in its portfolio CommScope could now offer an end-to-end solution for stadiums including DAS and Wi-Fi and also for those interested in Citizens Broadband Radio Service (CBRS) services in the near future.

Though commercial deployments for CBRS systems have not yet emerged, Ruckus has been a leader in the testing and certification process and is expected to be at the forefront of CBRS hardware providers when systems are ready to come online, possibly sometime next year.

If you’re keeping score (like we are), this is the third Ruckus has been acquired in the last two years. The list:

Feb. 22, 2017: Arris to acquire Ruckus from Brocade as part of $800 million deal

April 4, 2016: Brocade buys Ruckus for $1.2 B

That’s a lot of email changes and a closet full of new logowear…

First CBRS steps: Boingo deploys test network at Dallas’ Love Field

Even though its regulatory status is still uncertain, the untapped promise of the spectrum band known as CBRS is already spurring public technology trials, including one announced by Boingo Wireless today that will be used to test back-of-house business applications at Love Field airport in Dallas.

CBRS, also known as Citizens Broadband Radio Service, is the acronym shorthand for a 150 MHz-wide swath of wireless spectrum at the 3.5 GHz range that can support communications using the LTE standard. While the final rules for CBRS use in the United States are still pending final FCC approval, the expected availability of the spectrum sometime soon has service providers, gear vendors and other interested parties scrambling to get the technology up and running to kick the tires ahead of any commercial offerings. Like Wi-Fi, the CBRS spectrum will essentially be free to use, making it an potentially attractive space for providers of wireless services to large public venues and stadiums.

In Boingo’s case, what’s different about its trial is that it has partnered with the tech team at Love Field not to offer any services airport travelers might notice, but instead mainly to “push the envelope” on CBRS networking, according to Derek Peterson, Boingo’s chief technology officer.

With FCC permission to test devices in the CBRS spectrum, Boingo and the Love Field team are “taking advantage of [the test approval] to get used to CBRS, to take a first stab at it,” said Peterson in a phone interview.

Though widespread support for the radio chips necessary to connect via 3.5 GHz bandwidth is not yet available, Peterson said Boingo was able to find a mix of phones, dongles and other devices to be able to start playing around with the spectrum in a live environment. Verizon, one of the wireless carriers aggressively pursuing CBRS, has publicly said it expects to see CBRS-capable devices out before the end of the calendar year.

Massive MIMO is Sprint’s path to 5G, says CTO Saw

Dr. John Saw, CTO of Sprint, at an IEEE keynote speech. Credit all photos: Sprint

Sprint chief technical officer John Saw has seen the future of cellular wireless, and according to him it was at a sports event.

“I was at the [Winter] Olympics where KT [Korea Telecom] and Intel set up the first 5G network,” said Saw in a recent phone interview. “Stadiums will be a good showplace for the capabilities of 5G. It’s pretty impressive what you can do with 5G that you can’t do today.”

Saw, who was CTO at WiMAX play Clearwire before that company became part of Sprint, will be the first to admit that the network built for the PyeongChang Olympics wasn’t “true” 5G, but said it was a good precursor. He also added that it wasn’t a cost-conscious deployment, something MSR had heard from other sources who said Intel and KT didn’t hold back when it came to spending.

“They spent a lot of money [on the network],” Saw said.

But some of the services the Olympic network was able to support included local viewing of replays using Intel’s True View technology, which gives fans the ability to watch a play or action from a 360-degree angle. While Intel has had limited deployments of the technology at some U.S. sporting events, for the Olympics Saw said they used hundreds of cameras linked over millimeter wave frequencies, which can offer very low latency.

“They needed [to have the images] in real time,” Saw said, and built the millimeter wave network to do just that. While the network “wasn’t fully compliant to the subsequent 5G standards, a lot of what they built is the forerunner to 5G,” Saw said. “It was a pretty cool showcase, and will certainly find a home in stadiums.”

No Millimeter Wave spectrum for Sprint

Editor’s note: This profile is from our latest STADIUM TECH REPORT, an in-depth look at successful deployments of stadium technology. Included with this report is a profile of a new MatSing ball DAS deployment at Amalie Arena, a new DAS for the Chicago Cubs at Wrigley Field, and a look at the networks inside the new Banc of California Stadium in Los Angeles! DOWNLOAD YOUR FREE COPY now!

Millimeter wave networks, however, won’t be part of Sprint’s early push toward 5G, said Saw. Instead, he said Sprint will concentrate on deploying “Massive MIMO” networks in its rich space of spectrum at the 2.5 GHz frequency, where Sprint controls upwards of 150 MHz of spectrum in most major U.S. metro markets.

Without trying too hard here to explain exactly how Massive MIMO works — think splitting up transmissions between mulitple antennas then using lots of compute power to bring the data back together — the key here is Sprint’s spectrum holdings, which Saw said are still only about half used.

“When we launched LTE [on the 2.5 Ghz spectrum] we used less than half the spectrum we had,” Saw said. “With 5G, we will use all the spectrum we have in market. We’ll be one of very few carriers who launch 5G in the same [spectrum] footprint [as LTE].”

With the ability to carry “four to 10 times the capacity of regular LTE,” Saw sees Massive MIMO 5G as something perfect for large public venues like stadiums and shopping malls.

Dr. John Saw

“When you have sports events with 50,000 people in the stadium, you need this kind of capacity,” Saw said. “Were building out the footprint for [5G] this year, and we’ll launch next year.”

Saw said that part of the infrastructure support for 5G networks will be different as well.

“It’s more than just speed, or more capacity. It’s more than tonnage,” Saw said. “We’ll have a different way of deploying the new network, with a more distributed core, one [with more resources] out to the edge of the network.”

Why is such equipment redistribution necessary? According to Saw, a network with more components at the edge can help with content delivery for the new bandwidth-hungry apps like virtual-reality replays.

“Say you want VR at a hockey game, where you want to give real time [replay] viewing to customers, with different camera angles,” Saw said. “You literally have to have the 5G core inside the stadiums, so it can process [the content] without having to go back to the cloud.”

Will DAS trail in the path to 5G?

One type of network Saw doesn’t see leading the way to 5G is the traditional DAS, or distributed antenna system.

“DAS is going to have to migrate to 5G,” Saw said. “It’s not going to lead the pack.”

In fact, Saw said Sprint has been somewhat of a reluctant DAS participant at times, including at the most recent Super Bowls. In the last two of the NFL’s “big game” events, Super Bowl 51 in Houston and Super Bowl 52 in Minneapolis, Saw said Sprint used small cell deployments instead of the neutral DAS systems to augment its coverage.

“We had hundreds of small cells, inside and outside [the venues],” Saw said. “We got the same performance, maybe better, for a lot less money.”

Part of the issue for Sprint and DAS, Saw said, is that the carrier usually has to pay more for its unique spectrum bands, especially the 2.5 GHz frequencies which are not used by any of the other major wireless carriers.

“We always think through before we sign up for DAS fees… there’s more than one way to skin a cat,” Saw said. While in many cases there is no alternative except to participate in a neutral-host configuration, Saw said “we do prefer small cells.”

Will CBRS help?

One of the more hyped platforms being pushed this year is use of the CBRS spectrum at the 3.5 GHz range for not just more carrier networks, but even for “private” LTE networks, like for venues or campuses.

“It’s an interesting concept because it opens things up to more than just four operators,” Saw said. But he also called out the need for an online database to make sure CBRS spectrum use doesn’t interfere with systems run by the U.S. Navy, and added that without any definitive FCC action yet, the rules for future CBRS use are still unclear.

“There’s quite a lot of work to be done, and not a lot of spectrum there,” said Saw. While claiming that Sprint is “watching CBRS with interest,” he added that with its 2.5 GHz holdings, Sprint most likely won’t be at the front of any CBRS deployments.

“At the end of the day, CBRS is not 5G,” Saw said.

How will a merger with T-Mobile help?

Since our conversation took place just a day after Sprint and T-Mobile announced their renewed plans to merge, Saw didn’t have a lot of details to share, beyond his opinion that the two companies’ different spectrum holdings would build a more powerful competitor when put together.

“When you put our 2.5 (GHz) with their 600 MHz it gives you a much larger footprint with higer capacity,” Saw said. “There’s tremendous synergy. Both [companies] are enthusiastic about this deal.”

Editor’s note: This post is part of Mobile Sports Report’s new Voices of the Industry feature, in which industry representatives submit articles, commentary or other information to share with the greater stadium technology marketplace. These are NOT paid advertisements, or infomercials. See our explanation of the feature to understand how it works.