Temporary courtside network helps set Final Four Wi-Fi records

A temporary under-seat Wi-Fi network helped bring connectivity to courtside seats at this year’s Final Four. Credit all photos: Paul Kapustka, MSR (click on any picture for a larger image)

One of the traditional characteristics of the Final Four is the yearly travel scramble of the fortunate fans and teams who have advanced to the championship weekend. Somehow, with only a week’s notice, plane flights, road trips and hotel rooms get scheduled and booked, leading to packed houses at college basketball’s biggest event.

On the stadium technology side, a similar last-minute fire drill happens just about every year as well, as the hosting venues reconfigure themselves to host basketball games inside cavernous buildings built mainly to hold football crowds. At this year’s NCAA Men’s Final Four at U.S. Bank Stadium in Minneapolis, the stadium tech team and partner AmpThink were able to quickly construct a temporary Wi-Fi network to cover the additional lower-bowl seating. The new capactity was part of a record-setting Wi-Fi network performance at the venue, with single-day numbers surpassing those from Super Bowl 52, held in the same building the year before.

The Wi-Fi numbers, both staggering and sobering especially to venues who are next in line for such bucket-list events, totaled 31.2 terabytes for the two days of game action, according to figures provided by the NCAA. For the semifinal games on Saturday April 6, U.S. Bank Stadium’s Wi-Fi network saw 17.8 TB of traffic, topping the 16.31 TB used during Super Bowl 52 on Feb. 4, 2018. The Saturday semifinals also set an attendance record for the venue, with 72,711 on hand, topping the 67,612 in attendance for Super Bowl 52.

During the championship game on April 8, U.S. Bank Stadium saw an additional 13.4 TB of data used on the Wi-Fi network, giving the venue three of the top four single-day Wi-Fi numbers we’ve reported, with this year’s mark of 24.05 TB at Super Bowl 53 in Atlanta the only bigger number. Saturday’s take rate at U.S. Bank Stadium, however, surpassed even the most-recent Super Bowl, with 51,227 unique users on the network, a 70 percent take rate.

‘Like building an arena network inside a football stadium’

Editor’s note: This report is from our latest STADIUM TECH REPORT, an in-depth look at successful deployments of stadium technology. Included with this report is a profile of the new Wi-Fi network at Allianz Field in St. Paul, Minn., and an in-depth research report on the new Wi-Fi 6 standard! DOWNLOAD YOUR FREE COPY now!

Switches for the temporary network were deployed under the seat scaffolding.

There’s no doubt that the temporary network installed by AmpThink and the U.S. Bank Stadium IT team contributed a great deal to the final Wi-Fi totals, with 250 access points installed in the additional seats. Like at other football venues that are transformed into basketball arenas, U.S. Bank Stadium had temporary seating installed on all four sides of the stadium, with temporary risers stretching down over football seating as well as with risers built behind both baskets. More seats were installed on the “floor” of the football field, right up to the elevated court set in the middle. The temporary APs, like the existing ones in the stadium, are from Cisco.

“There are a lot more moving parts to a Final Four than to a Super Bowl,” said David Kingsbury, director of IT for U.S. Bank Stadium, describing the difference in providing the networking and technical underpinnings for each event. While planning for the networks was obviously done far in advance, the actual buildout of the temporary Wi-Fi couldn’t even begin until the additional seating was in place, a task that finished just five days before the first game was played.

That’s when AmpThink deployed a staff of 12 workers to start connecting cables to APs and to switches, while also adding in another 700 wired network connections to the courtside areas for media internet and TV monitor connections. Like it does for every venue network it designs and deploys, AmpThink came to the stadium equipped with a wide assortment of lengths of pre-terminated cables, preparation that made the fast deployment possible.

“If we had to spin raw cable and terminate it on site, we never would have been able to finish in five days,” said AmpThink president Bill Anderson.

AmpThink’s previous experience in deploying such temporary networks under temporary seating — including at the previous year’s Final Four in San Antonio — taught the company that it would also need protection for under-seat switch deployments, to fend off the inevitable liquid spills from the seats above. That requirement was potentially even more necessary at U.S. Bank Stadium, since this year’s Final Four was the first to allow in-venue sales of alcoholic beverages.

Some temporary seats were deployed on top of existing lower bowl seats.

With some of the temporary seating installed over existing seating, there were 95 APs in the existing handrail-enclosure design that had to be turned off for the Final Four, according to Kingsbury. The 250 new APs added were all installed under the folding chairs, in enclosures that simply sat on the floor.

According to AmpThink’s Anderson, the company did learn a lesson at U.S. Bank Stadium — that it will, at future events, need to secure the actual enclosures since during the weekend curious fans opened a few of the boxes, with one AP disappearing, perhaps as an interesting IT souvenir.

In San Antonio, AmpThink had zip-tied the enclosures to chairs, which led to increased labor to detatch the devices during the post-event breakdown. While having no such measures at U.S. Bank led to a fast removal — AmpThink said it had removed all the temporary network elements just seven hours after the championship game confetti had settled — for next year’s Final Four AmpThink plans to at least zip-tie the enclosures shut so that fans can’t attempt any ad hoc network administration.

More APs for back of house operations

Another difference between the Final Four and the Super Bowl is the fact that four, not two, teams are in attendance for a full weekend, necessitating the need to set up temporary “work rooms” adjacent to each school’s locker room area. The media work center for the Final Four is also typically larger than that of a Super Bowl, again with more cities and their attendant media outlets on site thanks to there being four, not just two, teams involved.

A concourse speed test taken just after halftime of the final game.

“We had to cover a lot of places in the stadium that we don’t normally cover” with wireless and wired network access, Kingsbury said, saying that an additional 30 APs were needed for team rooms and the main media workspace, which were located on the field level of the stadium in the back hallways. An interesting note at U.S. Bank Stadium was that the yards and yards of fabric used as curtains to cover the clear-plastic roofing and wall areas was actually benefical to Wi-Fi operations, since it cut off some of the reflective interference caused by ETFE surfaces.

According to Kingsbury the final count of active APs for the Final Four was 1,414, a number reached by adding in the temporary APs while deducting the ones taken offline. Not included in the official NCAA traffic numbers was an additional 3 TB of traffic seen during the free-admission Friday practice sessions, when 36,000 fans visited the stadium, with 9,000 joining the Wi-Fi network.

From the official stats, the peak concurrent user number from Final Four Saturday of 31,141 was also an overall record, beating Super Bowl 53’s mark of 30,605. (Super Bowl 53 had 70,081 fans in attendance for the Feb. 3 game between the New England Patriots and the Los Angeles Rams.) The Wi-Fi network numbers for Monday’s championship game (won by Virginia 85-77 over Texas Tech in overtime) saw big numbers itself, with 13.4 TB of total data used, and 48,449 unique connections and 29,487 peak concurrent users (out of 72,062 in attendance). Monday’s game also produced a peak throughput number of 11.2 Gbps just after the game ended.

None of those totals could have been reached without the temporary network, which AmpThink’s Anderson compared to “building a 10,000-seat arena network inside a football stadium.” Next stop for a temporary Wi-Fi network is Mercedes-Benz Stadium in Atlanta, where the 2020 Final Four awaits.

This is what your football stadium looks like with a championship basketball game inside of it.

The temporary center-hung scoreboard was able to play video programming onto the court surface.

The NBA on TBS crew was courtside for the Final Four.

The secret to keeping your network operations room running? All kinds of energy inputs.

Final Four displays, new Giants scoreboard, all in the new VENUE DISPLAY REPORT!

Mobile Sports Report is pleased to announce the second issue of our new VENUE DISPLAY REPORT, with in-depth profiles of display technology at the Final Four, a huge new video board for the San Francisco Giants at Oracle Park, and the innovative directory displays at the Mall of America. No need to sign up or register — just click on the image below and start reading the issue today!

A new vertical-specific offering of MSR’s existing STADIUM TECH REPORT series, the VENUE DISPLAY REPORT series will focus on telling the stories of successful venue display technology deployments and the business opportunities these deployments enable. Like its sibling Stadium Tech Report series, the Venue Display Report series will offer valuable information about cutting-edge deployments that venue owners and operators can use to inform their own plans for advanced digital-display strategies.

Our reporting and analysis will be similar to that found in our popular STR series, with stadium and venue visits to see the display technology in action, and interviews and analysis with thought leaders to help readers better inform their upcoming technology purchasing decisions. And in case you are new to the MSR world, rest assured that all our VDR reports will be editorially objective, done in the old-school way of real reporting. We do not accept paid content and do not pick profiles based on any sponsorship or advertising arrangements.

This second issue is packed with real-world information, including how U.S. Bank Stadium uses the Cisco Vision IPTV display management system to help run the 2,000-plus digital displays inside and around the venue. We also take a good look at the huge new video board installed for this season at Oracle Park in San Francisco, and also bring you an in-person profile of the innovative directory display system at the Mall of America.

Start reading the second issue now! No download or registration necessary. You can also go back and view our inaugural VDR issue for more great information!

As venues seek to improve fan engagement and increase sponsor activation, display technology offers powerful new ways to improve the in-stadium fan experience. While these topics are of prime interest to many of our long-term audience of stadium tech professionals, we suggest that you share the link with colleagues on the marketing and advertising sales side of the house, as they will likely find great interest in the ROI enabled by strategic display system deployments.

Sponsorship spots are currently available for future VDR series reports; please contact Paul at kaps at mobilesportsreport.com for media kit information.

New Report: Wi-Fi 6 research report, record Wi-Fi at the Final Four, and more!

MOBILE SPORTS REPORT is pleased to announce the Summer 2019 issue of our STADIUM TECH REPORT series, the ONLY in-depth publication created specifically for the stadium technology professional and the stadium technology marketplace.

Our latest issue contains a research report on the new Wi-Fi 6 standard and what it means to stadium networks, as well as three separate profiles of Wi-Fi network deployments, including a look at how a temporary network helped fans use record data totals at the Final Four! Download your FREE copy today!

Inside the report our editorial coverage includes:

— A Wi-Fi 6 research report that looks into the new standard’s technology improvements that make it a great bet for in-venue networks;
— An in-person report from the NCAA Men’s 2019 Final Four at U.S. Bank Stadium, where the weekend saw a record 31+ terabytes of Wi-Fi data used;
— How Minnesota United’s new home, Allianz Field, got a big Wi-Fi network from a small company, Atomic Data;
— A look at the new Wi-Fi network at Chesapeake Energy Arena, home of the NBA’s Oklahoma City Thunder.

Download your free copy today!

We’d like to take a moment to thank our sponsors, which for this issue include Mobilitie, JMA Wireless, Corning, Boingo, MatSing, Cox Business/Hospitality Network, ExteNet, Neutral Connect Networks, Atomic Data, Oberon, and America Tower. Their generous sponsorship makes it possible for us to offer this content free of charge to our readers. We’d also like to welcome readers from the Inside Towers community, who may have found their way here via our ongoing partnership with the excellent publication Inside Towers. We’d also like to thank the SEAT community for your continued interest and support.

AT&T sees 2.5 TB of DAS traffic at men’s Final Four championship game

The concourses at U.S. Bank Stadium were well covered by DAS and Wi-Fi antennas for the recent Final Four. Credit: Paul Kapustka, MSR

In addition to the big Wi-Fi numbers seen at the NCAA men’s 2019 basketball championship game, AT&T said it saw 2.5 terabytes of data used by its customers on its DAS network at U.S. Bank Stadium in Minneapolis for the final game of the men’s Final Four weekend.

The neutral-host DAS in U.S. Bank Stadium, which is operated by Verizon, tested strong during MSR’s visit to the Final Four — we saw a mark of 37.5 Mbps on the download and 45.0 Mbps on the upload during the championship game, on a Verizon phone. Verizon, however, declined to provide any data totals from the Final Four.

In addition to its championship game numbers, AT&T said it saw 44.6 TB of data used on its networks in and around U.S. Bank Stadium for the entire men’s Final Four weekend.

Women’s Final Four sees 1.1 TB of DAS

At the NCAA women’s Final Four weekend in Tampa, Fla., AT&T said it saw a total of 1.1 TB of traffic used by its customers on the new MatSing Ball-powered DAS at Amalie Arena. That number includes traffic from both semifinal games as well as the championship game on April 7.

Colorado brings Wi-Fi and DAS to Folsom Field

Folsom Field at night. Credit: University of Colorado (click on any picture for a larger image)

There will be a change in the air at Folsom Field this fall, and not just from the team that new head coach Mel Tucker will lead onto the gridiron. For the first time, the mile-high atmosphere inside the University of Colorado’s historic venue will be filled with fan-facing Wi-Fi and cellular signals, thanks to new networks being installed this offseason by third-party host Neutral Connect Networks (NCN).

In a deal that will also bring Wi-Fi and a cellular DAS to the school’s basketball arena, NCN will use Cisco gear for the Wi-Fi network and JMA Wireless gear for the cellular networks. A centrally located head-end will serve both venues via fiber connections, some run through existing tunnels from the campus’ old steam-heating infrastructure.

Due to be live before the 2019 football season begins on Sept. 7 when CU hosts Nebraska, the Wi-Fi network will use 550 APs in a mostly under-seat deployment at Folsom Field, where there are no overhangs over any of the seating areas. DAS deployment in Colorado’s historic football stadium — which first hosted games in 1924 — will use antennas pointing down from the stadium’s top edges, with some new flagpoles scheduled to help provide antenna-mounting locations.

While its incredibly picturesque location at the edge of the Rocky Mountains has historically made Folsom Field a fan-favorite place to visit (at least for photos), the lack of any comprehensive wireless coverage of any sort has produced some grumbling from Buffs fans in recent years. According to Matt Biggers, CU’s chief marketing officer and associate athletic director for external affairs, wireless coverage inside the sports venues has been a topic of internal research for more than 6 years.

“It was all about finding a partner and a financial model that works for us,” said Biggers. “It finally got to a point where it made sense to pull the trigger.”

Neutral host model appealing to schools

Editor’s note: This report is from our latest STADIUM TECH REPORT, an in-depth look at successful deployments of stadium technology. Included with this report is a profile of the Wi-Fi records set at Super Bowl 53, as well as a profile of Wi-Fi at Vivint Smart Home Arena in Salt Lake City! DOWNLOAD YOUR FREE COPY now!

The CU Events Center, home of Colorado hoops teams. Credit: Paul Kapustka, MSR

The model brought to CU is a classic neutral-host operation, where a provider like NCN (which bought the former sports-stadium practice from 5 Bars) will build a school’s Wi-Fi and DAS networks under a revenue-sharing deal with the school where the carriers help some with upfront payments and then provide payments over a long-term lease to operate on the DAS.

The neutral-host option is one good way for schools or teams with smaller budgets or lightly used facilities to bring connectivity to arenas. CU’s Folsom Field, for example, doesn’t see much use other than the six home games per football season. This year, the stadium will see big crowds beyond football only at a few events, including the Memorial Day Bolder Boulder 10K footrace (which ends inside the stadium), a Fourth of July fireworks celebration, and a couple of July concerts featuring the Dead & Company tour.

According to James Smith, vice president of carrier services for NCN, AT&T will be the anchor tenant on the DAS, and will be first to be operational. Verizon Wireless and T-Mobile, Smith said, are still negotiating long-term agreements but are expected to be on the DAS by 2020.

NCN [then under its old name of 5 Bars] negotiated a similar neutral-host deal with CU’s neighbor to the north, Colorado State University, for CSU’s new football stadium which opened in 2017. Now known as Canvas Stadium, the 41,000-seat venue had 419 total Wi-Fi access points when it opened, with approximately 250 of those used in the bowl seating area. Like CSU’s deployment, the Wi-Fi network at Folsom Field will use primarily under-seat AP deployments, mainly because the stadium’s horseshoe layout has no overhangs.

DAS gear already installed in the CU Events Center

According to NCN’s Smith, the current plan sees a deployment of 550 APs in Folsom Field, with another 70 APs in the basketball arena, the CU Events Center. Both venues’ networks will be served by a central head-end room located in an old telephone PBX space near the center of campus. Fiber links will run from there to both Folsom Field and the Events Center.

At Folsom, the NCN team will have a long list of deployment challenges, mainly having to navigate the construction particulars of a stadium that has been gradually expanded and added onto over the years.

“Sometimes it’s hard to know what’s behind a brick,” said NCN director of program management Bryan Courtney, speaking of existing infrastructure that has been around for decades. Smith said the Folsom Field DAS will make use of overhead antennas, including some that will require new flagpole-type structures that will need to match Folsom Field’s architectural heritage.

Basketball arena is all top-down

At the 11,064-seat CU Events Center, formerly known as the Coors Events Center, deployment of both Wi-Fi and DAS will be somewhat easier, as all the gear servicing the seating area will be suspended from the catwalks. With the main concourse at stadium entry level and all the seats in a single rectangular bowl flowing down from there, the ceiling is close enough for good top-down coverage for both Wi-Fi and celluar, NCN’s Smith said.

The Golden Buffalo Marching Band on a CU game day. Credit: Paul Kapustka, MSR

Though deployment of both networks in the Events Center is currently underway, neither will be active until after the current college basketball season is completed. However, the Events Center stays somewhat more busy than the football stadium, with events like local high school graduations and other special events (like a Republican Party debate in 2015) making use of the space. Both networks should be fully up and running by the next basketball season, according to NCN.

Unlike some other universities that are aggressively pursuing digital fan-connection strategies, CU’s Biggers said the school will start slowly with its fan-facing networks, making sure the experience is a solid one before trying too hard.

“We’re pretty conservative, and this is a complicated project and we want to make sure we get it right,” said Biggers. Though Biggers said CU fans haven’t been extremely vocal about connectivity issues inside the sports venues, he does admit to hearing about “some frustration” about signals in some areas of the stadium (which until now has only been served by a couple of dedicated macro antennas from the outside).

“There’s definitely a hunger [for wireless service],” Biggers said.

On the business side, Biggers said CU will also be taking more time to evaluate any additions to its game-day digital operations. Though CU recently introduced a mobile-only “buzzer beater” basketball ticket package that offered discounted passes that would deliver an assigned seat to a device 24 hours before game time, Biggers said that for football, a longtime paper-ticket tradition for season ticket holders would likely stay in place.

Colorado will also “re-evaluate” its game-day mobile application strategy, Biggers said, with the new networks in mind. “But the real game-changer for us is data collection,” he said. “We’re most excited about having data to better serve the fans.”

Commentary: Cheer, Cheer for old Wi-Fi

A hoops fan records action during the FInal Four at U.S. Bank Stadium. Credit all photos: Paul Kapustka, MSR (click on any picture for a larger image)

News item: Super Bowl 53 sees 24 terabytes of Wi-Fi data used.

Second news item: Final Four weekend sees 31.2 terabytes of Wi-Fi data used.

Even as people across the wireless industry seem ready to dig Wi-Fi’s grave, the view from here is not only is Wi-Fi’s imminent death greatly exaggerated, things may actually be heading in the other direction — Wi-Fi’s last-mile and in-building dominance may just be getting started.

The latest ironic put-down of Wi-Fi came in a recent Wall Street Journal article with the headline of “Cellphone Carriers Envision World Without Wi-Fi,” in which a Verizon executive calls Wi-Fi “rubbish.” While the article itself presents a great amount of facts about why Wi-Fi is already the dominant last-mile wireless carrier (and may just get stronger going forward) the article doesn’t talk at all about the Super Bowl, where Verizon itself basically turned to Wi-Fi to make sure fans at the big game who were Verizon customers could stay connected.

Wi-Fi speedtest from U.S. Bank Stadium during the Final Four championship game.

As readers of MSR know, the performance of the cellular DAS at Mercedes-Benz Stadium in Atlanta has been a question mark since its inception, and the emergence of competing lawsuits between lead contractor IBM and supplier Corning over its implementation means we may never learn publicly what really happened, and whether or not it was ever fixed. Though stadium tech execs and the NFL said publicly that the DAS was fine for the Super Bowl, Verizon’s actions perhaps spoke much louder — the carrier basically paid extra to secure part of the Wi-Fi network bandwidth for its own customers, and used autoconnect to get as many of its subscribers as it could onto the Wi-Fi network.

While we did learn the Wi-Fi statistics in detail — thanks to the fact that Wi-Fi numbers are controlled by the venue, not the carriers — it’s interesting to note that none of the four top cellular providers in the U.S. would give MSR a figure of how much cellular traffic they each saw in the stadium on Super Sunday. For the record, stadium officials said they saw 12.1 TB of data used on the Mercedes-Benz Stadium DAS on Super Bowl Sunday, a figure that represents the total traffic from all four carriers combined. But how that pie was split up will likely forever remain a mystery.

AT&T did provide a figure of 23.5 TB for Super Bowl traffic inside the venue as well as in a 2-mile radius around the stadium, and Sprint provided a figure (25 TB) but put even a less-measurable geographic boundary on it, meaning Sprint could have basically been reporting all traffic it saw anywhere inside the greater Atlanta city limits. Verizon and T-Mobile, meanwhile, both refused to report any Super Bowl cellular statistics at all.

An under-seat Wi-Fi AP placement in the end zone seating at the Final Four.

Verizon also did not reply to a question about how much traffic it saw on the Verizon-specific Wi-Fi SSID inside the venue. While we get the marketing reasons for not reporting disappointing stats (why willingly report numbers that make you look bad?), it seems disingenious at best for one Verizon executive (Ronan Dunne, executive vice president and president of Verizon Wireless) to call Wi-Fi “rubbish” when another part of the company is relying heavily on that same rubbish technology to make sure its customers can stay connected when the cellular network can’t keep up. One man’s trash, I guess, is another division’s treasure.

Wi-Fi 6 and more spectrum on the way

For venue owners and operators, the next few years are likely going to be filled with plenty of misinformation regarding the future of wireless. The big carriers, who pull in billions each quarter in revenue, are staking their near-term future on 5G, a label for a confusing mix of technologies and spectrum chunks that is unlikely to be cleared up anytime soon. Unlike the celluar industry change from 3G to 4G — a relatively straightforward progression to a new and unified type of technology — the change to 5G has already seen carriers willing to slap the marketing label on a different number of implementations, which bodes many headaches ahead for those in the venue space who have to figure out what will work best for their buildings and open spaces.

There’s also the imminent emergence of networks that will use the CBRS spectrum at 3.5 GHz, which will support communications using the same LTE technology used for 4G cellular. Though CBRS has its own challenges and hurdles to implementation, because it is backed by carriers and the carrier equipment-supply ecosystem, you can expect a blitz of 5G-type marketing to fuel its hype, with poor old Wi-Fi often the target for replacement.

While the Wi-Fi Alliance and other industry groups rallying around Wi-Fi might seem like the Rebel Alliance against a First Order dreadnought, if I’ve learned anything in my career of technology reporting it’s that you should never bet against open standards. I’ve been around long enough to see seemingly invincible empires based on proprietary schemes collapse and disappear under the relentless power of open systems and standards — like Ethernet vs. DEC or IBM networking protocols, and TCP/IP vs. Novell — to count out Wi-Fi in a battle, even against the cellular giants. In fact, with the improvements that are part of Wi-Fi 6 — known also as 802.11ax in the former parlance — Wi-Fi is supposed to eventually become more like LTE, with more secure connections and a better ability to support a roaming connection and the ability to connect more clients per access point. What happens then if LTE’s advantages go away?

With Wi-Fi 6 gear only now starting to arrive in the marketplace, proof still needs to be found that such claims can work in the real world, especially in the demanding and special-case world of wireless inside venues. But the same hurdles (and maybe even more) exist for CBRS and 5G technologies, with big unanswered questions about device support and the need for numerous amounts of antennas that are usually ignored in the “5G will take over the world soon” hype stories. I’d also add to that mix my wonder about where the time and talent will come from to install a whole bunch of new technologies that will require new learning curves; meanwhile, as far as I can tell the companies supporting Wi-Fi continue to add technology pros at ever-growing user and education conferences.

So as we ready for the inevitable challenge of sifting through cellular FUD and hype let’s have a cheer for good old Wi-Fi — for now the champion of the biggest data-demand days in venues, and maybe the leader for years to come.