New Report: DAS deployments rule, with new networks at Wrigley Field, AT&T Park and Amalie Arena

Call it the ‘Connect the DAS’ issue — our latest STADIUM TECH REPORT is heavy on DAS news, with new deployments at Wrigley Field, AT&T Park, and Amalie Arena — all of them breaking news, as in you heard it here first!

At AT&T Park, the home of the San Francisco Giants, there is a brand new upgrade to the stadium’s DAS network, an AT&T-only deployment of DAS antennas inside the same under-seat enclosures used for stadium Wi-Fi. An experiment at first, just a few months into the season it has surprised both the team and the carrier with how well it’s doing. Get the details by DOWNLOADING OUR FREE REPORT right now!

Second at bat in the news-scoop arena is another DAS deployment, this one just getting underway at Amalie Arena in Tampa, home of the NHL’s Lightning. The twist on this new network — also being installed by AT&T — is that it will exclusively use MatSing ball antennas, those quirky-looking “big ball” antennas that you may have seen used in a temporary fashion at outdoor events. What’s bringing them inside? DOWNLOAD THE REPORT and read our exclusive story!

And at venerable Wrigley Field — the friendly confines of the Chicago Cubs — a long-planned upgrade to the venue’s cellular systems is finally in place, using JMA Wireless equipment deployed by DAS Group Professionals. Our in-person visit took a look at how DGP and the Cubs merged new technology with one of baseball’s most historic structures. Who says DAS is dead?

In addition to those stories we also have a complete, in-person visit and profile of the new networks at the newest stadium in MLS, the Los Angeles Football Club’s Banc of California Stadium. We also have a Q&A with Sprint CTO Dr. John Saw, all packed into one issue ready for FREE DOWNLOAD right now!

We’d like to thank our sponsors for this issue, which includes Mobilitie, Corning, Huber+Suhner, JMA Wireless, Cox Business/Hospitality Network, Oberon, Boingo, MatSing, ExteNet and DAS Group Professionals — without their support, we wouldn’t be able to make all this great content available to you for no cost. Thanks for your interest and we hope you enjoy the latest issue of our STADIUM TECH REPORT series!

State of the Stadium Network, 2018: Smooth sailing right now but rough waters ahead?

Here at Mobile Sports Report we used to have a yearly survey (called “State of the Stadium”) which we used mainly to see if and when wireless networks were being deployed in large sports venues. After just a few years, it quickly became apparent that for almost all the respondents we heard from, the question was no longer “if” networks would be deployed, but just “when.” And for more than most, the “when” was happening already.

Looking back over the past year or so of our stadium profile visits, it’s clear that the still-young market of large-venue wireless connectivity has reached a certain level of maturity, especially when it comes to well-funded deployments of Wi-Fi and cellular distributed antenna system (DAS) networks. Where in the recent past the San Francisco 49ers’ Levi’s Stadium was a groundbreaker with its extensive wireless coverage when it opened in 2014, such networks have now become the standard expectation for new venues like the Sacramento Kings’ Golden 1 Center, U.S. Bank Stadium in Minneapolis, Mercedes-Benz Stadium in Atlanta, T-Mobile Arena in Las Vegas and even in many “Tier 2” stadiums like Colorado State University’s new football stadium.

Similar high-quality networks are also finding their way into older stadiums as those venues get networking for the first time or revamp their initial outlays. Over the past couple years we’ve seen new networks appear in old venues like Notre Dame Stadium, SAP Center in San Jose and more recently, the Alamodome. Other venues that led the initial charge toward wireless networks for fans, like the New England Patriots’ Gillette Stadium, the Bank of America Stadium in Charlotte and Lincoln Financial Field in Philadelphia, all had recent upgrades to their wireless infrastructures as the venues smartly stayed in tune with the ever-increasing demands of fans and their mobile devices. And then there are pioneers like AT&T Park and AT&T Stadium, which have always managed to lead the way in finding new ways to keep their connectivity at state of the art levels.

What really helps point to a certain level of maturity is the different methods and manufacturers who all have figured out their own ways to get things done. Wi-Fi antenna deployments placed under seats, in railing mounts or overhead have all proven themselves in numerous live tests; DAS deployments have shown similar successes in a somewhat corresponding number of techniques and equipment usages; in all, there seems to be well more than one path to a successful wireless infrastructure. But before we start taking networking for granted as a commodity like electricity or plumbing, it’s a good time to remember that unlike those two services, networking doesn’t stand still. As new end-user devices and the apps they run continue to drive growth in demand, the question now is whether current Wi-Fi and DAS networks for venues will be able to keep up, or whether new technology is needed.

The need for more wireless spectrum

Editor’s note: This profile is an excerpt from our latest STADIUM TECH REPORT issue for Spring 2018, which includes a look at Wi-Fi performance during the Final Four, a recap of wireless performance at Super Bowl 52, a profile of new venue construction in Los Angeles and more! DOWNLOAD YOUR FREE COPY right now from our site!

In a previous lifetime as a cellular systems analyst, yours truly wrote a long research paper about the importance of spectrum, predicting that at some point the leading wireless carriers, namely AT&T and Verizon Wireless, were going to need new bands to expand their services. While there have been some technological tweaks to find more capacity than originally thought in the 4G LTE space, on the cellular front the march to so-called “5G” systems is well underway, with the predictable problem of marketing promises being far out ahead of usable reality.

While we’ll save an in-depth look at 5G for another point in time, it’s useful to notice that all the large wireless carriers are already making 5G announcements, of 5G trials, of 5G local networks and other assorted claims of leadership. While nobody really knows exactly what 5G is for sure, what is known is that to get to the faster/better claims being staked there is going to be new spectrum in play for 5G services, and some of it may work better than others for use inside venues.

What’s clearly not known at all is how 5G services will arrive for sports stadiums, as in whether or not they will fit inside the current DAS model. Will carriers be able to share 5G systems like they do now on neutral-host DAS deployments? Right now that’s doubtful given that carriers like Sprint and T-Mobile are already talking about 5G deployments on much different spectrum spaces — and if the proposed merger between the two carriers becomes reality, how does that further change the 5G planning landscape? Perhaps the only thing we can be sure of is a lot of mixed messages in the near future about the best way to move forward from a cellular perspective.

Will carriers take over unlicensed bands?

On the Wi-Fi side of things, a smart friend of ours once claimed that when it came to Wi-Fi network deployments, “real estate is the new spectrum” since building owners could pretty much stake a free claim to the unlicensed spectrum spaces within their walls.

But now, there may be some storm clouds brewing as carriers seek to implement systems that let them use some of the 5 GHz unlicensed channels for LTE networks, an idea with possible consequences for current venue networks.

Aruba’s Chuck Lukaszewski wrote about this issue for Mobile Sports Report last summer, and some of his points bear repeating and remembering, especially these two: One, most Wi-Fi networks in large stadiums are already “spectrum constrained,” meaning that they need all the channels in the unlicensed band to ensure good service across an entire venue; Two, by introducing a system where cellular providers would use a chunk of that spectrum for LTE networks, the effects are as yet unknown — and venue operators would most likely be at the mercy of carriers to both acknowledge and comply with any possible conflicts that might arise.

As we here at Mobile Sports Report are cynics of the first order, our first question in this matter is about whether or not there are any clauses in those contracts venues have signed with carriers that will allow the cellular providers to “share” spectrum in the Wi-Fi space as well. While Verizon, AT&T and other service providers have paid quite a few dollars to support many stadium systems, it’s worth it to wonder if some of those deals may not look so good going forward if they include the legal ability for carriers to poach spectrum currently used only by Wi-Fi.

CBRS to the rescue?

Another technology/spectrum space we’ll be looking at more closely in the near future is the Citizens Broadband Radio Service, which sits at the 3.5 GHz space in the electromagnetic spectrum roster. Though new FCC rules on the use of this spectrum (currently used primarily by the U.S. Navy) haven’t yet been solidified, it seems from all signals that eventually what will emerge is a kind of tiered licensing type of situation with licenses that cover large, small or even local geographic areas, which may allow for building owners to set up private networks that work sort of like Wi-Fi does now.

One attractive option being touted is “private” LTE networks, where venue or building owners could build their own DAS-like LTE network infrastructure for CBRS spectrum, then rent out space to carriers or run their own networks like Wi-Fi but with LTE technology instead.

What’s unknown is exactly how the licensing scheme will shake out and whether or not big carriers will be able to dominate the space; here it’s helpful to remember that big wireless carriers typically spend millions in lobbying fees to influence decisions in places like the FCC, and venue owners spend… nothing. Verizon recently announced it expects to have CBRS-ready devices working before the end of this calendar year, so it’s likely that CBRS systems may be more of an immediate concern (or opportunity) for venues than 5G. And the marketing folks behind CBRS are on full speed ahead hype mode, even crafting a marketing name called “OnGo” as an easier-to-sell label than the geeky “CBRS.” So buyer beware.

Already, Mobile Sports Report has heard chatter from folks who are helping design networks for greenfield operations that the choices simply aren’t as clear as they were recently, when you could pretty much count on Wi-Fi and DAS to meet whatever wireless needs there were. While that duo may still be able to get the job done for the near future, looking farther ahead the direction is much less clear and the sailing no doubt much less smooth. Here at MSR, we’ll do our best to help batten the hatches and give as much clear guidance as we can. At the very least, it should be an interesting trip.

Final Four sees 9.97 TB of data used on Alamodome Wi-Fi

Fans at the Alamodome using mobile devices before the big game. Credit all photos: Paul Kapustka, MSR (click on any photo for a larger image)

The final stats are in, and this year’s men’s NCAA basketball tournament Final Four weekend in San Antonio saw a total of 9.97 terabytes of data used on the Wi-Fi network inside the Alamodome, according to official NCAA network reports.

With 4.9 TB of traffic used during the Saturday semifinal games and 5.07 TB used during the Monday night final the Alamodome Wi-Fi mark fell a bit below the 11.2 TB of data use seen during the 2017 Final Four weekend at the University of Pacific Stadium in Glendale, Ariz. With about 10,000 more fans per game (attendance at last year’s two sessions was 77,612 for Saturday’s semifinals and 76,168 for Monday’s championship, which were both second-highest ever numbers) and a more mature network it’s not surprising that there was a dip in Wi-Fi usage; the somewhat smaller Alamodome had 67,831 in attendance for the Monday night championship game.

So far only AT&T has reported DAS stats from this year’s Final Four, with 2 TB used on Saturday and 1.1 TB used Monday. Last year in Glendale AT&T said it saw 6.4 TB of DAS use. We have asked Verizon and Sprint for numbers but so far have not yet gotten any replies. As a stated policy T-Mobile does not report data traffic numbers from big events.

In a slight change from the preliminary reports we got, the official numbers show that the Alamodome Wi-Fi network saw 19,557 unique devices connect to the network on Saturday, with a peak concurrent total that day of 12,387 devices. On Monday night those numbers were 17,963 unique connections and 12,848 peak concurrent connections. Peak throughput for the Wi-Fi network on Saturday was 2.1 Gbps, while on Monday the mark was 1.6 Gbps.

Wrigley Field gets new DAS in time for Cubs’ home opener

The Chicago Cubs’ Wrigley Field will have a new DAS working for opening day. Credit for these 2017 season pictures: Paul Kapustka, MSR (click on any photo for a larger image)

After some construction delays that no Chicago Cubs fans minded, the Friendly Confines of Wrigley Field will have a new high-performance distributed antenna system (DAS) operational for Monday’s scheduled Cubs home opener for the 2018 season.

Designed and deployed by DAS Group Professionals, the new in-stadium cellular network was originally scheduled to be ready by last year; but when the Cubs took their historic march to the World Series title in 2016, many of the in-progress construction plans for Wrigley Field got delayed or rearranged, to the objection of nobody at all who cheers for the north siders.

And even though some of the most ambitious parts of the Wrigley renovation took place this winter — including removing most of the seats and concrete in the lower seating bowl to clear the way for some lower-level club spaces — the DGP crew along with the Cubs’ IT organization delivered the new cell network in time for the first pitches scheduled Monday afternoon.

Wi-Fi coming in as season goes on

“We definitely put scheduling and timing to the test, but we got it done,” said Andrew McIntyre, vice president of technology for the Chicago Cubs, in a phone interview. First announced back in 2015, the networking plan for the Wrigley renovations — which includes coverage for the plaza outside the stadium, the new team office building as well as the across-the-street Hotel Zachary that also just opened for business — also includes a new Wi-Fi network using gear from Extreme Networks. Since the Wi-Fi network is more construction-conflicted than the DAS deployment, it will be introduced gradually over the next few months, McIntyre said.

“By the All-Star break, we should have both systems online,” McIntyre said.

The DAS system deployed by DGP uses JMA equipment, just like DGP’s other big-stadium DAS deployments at the San Francisco 49ers’ Levi’s Stadium and the Sacramento Kings’ Golden 1 Center. Steve Dutto, president of DGP, acknowledged the challenge of the Wrigley buildout, including one instance where DGP technicians needed to set up scaffolding to mount antennas but couldn’t because instead of a concrete floor there was a 60-foot hole in the ground.

Hey hey!

“We worked around all that and got it done,” said Dutto. According to Dutto DGP has signed up all four major U.S. wireless carriers for the DAS, with all except Sprint operational for opening day. The head-end building for the DAS, he said, is located in what he thinks is a former hot-dog stand a half a block from the park. (If you’re looking for a snack in the head end room, just remember, in Chicago there’s no ketchup on hot dogs.)

Dutto said the DAS antennas are all overhead mounts, not a problem in Wrigley since the overhangs offer plenty of mounting spaces. However, given the historic look and feel of the park, Dutto did say that “we definitely had to tuck things away better and make sure we had good paint matches.” Not a Chicago native, Dutto said that the charm of the stadium hit him on first view.

“When we pulled up for the first time,” he said, “it was… wow. There’s nothing like it.”

Under seat for Wi-Fi will take time to deploy

The Cubs’ McIntyre, who admits to guzzling coffee by the quart these days, said the field-level renovations — which included removing all lower seats and the foundational concrete to clear out room for field-level club spaces — made finishing the Wi-Fi deployment something that couldn’t be pushed. With no overhangs covering the premium box seat areas, Wi-Fi APs there will need to be mounted under seats, something that just couldn’t get finished by Monday.

“It’s less of a technical challenge and more of a structural engineering challenge,” said McIntyre of the under-seat deployment method, which usually involves a lot of work with drilling through concrete and mounting APs in weather-sealed enclosures. McIntyre said the Cubs and Extreme also plan to use under-seat deployments in Wrigley’s famous outfield bleachers, which also lack any overhead infrastructure. In what he termed a “slow roll,” McIntyre said parts of the Wi-Fi network will come online gradually as the season progresses, starting first with the spaces outside the stadium.

Bringing backbone power to the new network is partner Comcast Business, which just announced a sponsorship deal with the Cubs that will see a “XfinityWiFi@Wrigley” label on the Wrigley Wi-Fi SSID. According to McIntyre Comcast will bring in twin 10-Gbps pipes to power the Wrigley Wi-Fi network.

This panoramic view shows why the lower level seats will need under-seat APs for Wi-fi

Ready or not, Unlicensed LTE is here. What should your venue do?

The entry concourse at Atlanta’s new Mercedes-Benz Stadium. Credit all photos: Paul Kapustka, MSR (click on any photo for a larger image)

By Chuck Lukaszewski, Aruba Networks, a Hewlett Packard Enterprise company

There’s much excitement around the coming of “unlicensed LTE” and for good reason. In our anytime, anywhere world the last device many of us use at night, and the first one we pick up in the morning, is a mobile phone, tablet or computer. Although much of the time our devices connect via Wi-Fi, when we’re in transit we depend on cellular.

With consumers quick to express their disappointment when their apps fail to respond – or don’t respond fast enough – on a wireless network, cellular providers are keenly aware they must keep pace with rapidly escalating user experience expectations. Research suggests mobile data traffic will grow by 47 percent annually through 2021. Combine the two and the drivers for expanding network capacity are clear.

While the lure of more bandwidth can be attractive, stadium and venue operators need to carefully evaluate the technological impact and operational overhead unlicensed LTE introduces.

Gigabit cellular coming soon

Editor’s note: This post is part of Mobile Sports Report’s new Voices of the Industry feature, in which industry representatives submit articles, commentary or other information to share with the greater stadium technology marketplace. These are NOT paid advertisements, or infomercials. See our explanation of the feature to understand how it works.

To provide gigabit speeds, the cellular industry has enhanced LTE technology to bond multiple channels together, called “carrier aggregation.” Although originally designed only to combine different licensed frequencies, it has now been extended to aggregate licensed spectrum with 5 GHz unlicensed spectrum (where Wi-Fi operates). Two competing technologies for doing so have emerged, with notable differences when deploying in high-density environments like stadiums in the U.S.

LTE-U (LTE in the Unlicensed Spectrum) is a proprietary technology, developed by the LTE-U Forum, a consortium of several cellular-related companies. It enables simultaneous operation of LTE over both licensed and unlicensed spectrum by aggregating the bands together, resulting in a performance boost. However, the way LTE-U takes control of a channel – while legal in the U.S. – is controversial and may significantly degrade performance of Wi-Fi equipment using the same channel. The Wi-Fi and cellular industries worked together to produce a coexistence test plan, but so far none of the test results for LTE-U equipment authorized by the FCC have been made public.

LAA (Licensed Assisted Access) can be thought of as the standardized version of unlicensed LTE, designed to meet European “listen-before-talk” (LBT) requirements, so it can be deployed anywhere on the planet. It was developed through the 3rd Generation Partnership Project (3GPP) worldwide standards organization, with wide participation including input from the Wi-Fi community.

DAS gear above concession stand at Coors Field

Think of LBT like the telephone party lines of yesteryear, where multiple customers share a communal phone line but only one person can use it at a time for their conversation while others wait. When there is no conversation happening on the party line and two or more people try to speak at once, other customers of the party line graciously “back off” to allow one person to go first. In cellular terms, this makes LAA a more “polite” technology than LTE-U, as it waits to transmit until a channel is clear. The back-off method it uses is compatible with Wi-Fi at least on paper, although 3GPP does not require vendors to perform or publish any kind of test results.

The Road Ahead

Of course what you want to know is how the advent of LTE-U/LAA impacts your stadium and whether to add gigabit cellular to the connectivity mix.

As a robust, stable and mature technology, Wi-Fi’s strength and ability to handle exceptional stadium data traffic loads is well established. To make informed decisions about whether to consider LTE-U/LAA technologies alongside Wi-Fi, here are five essential technical considerations.

Spectrum Availability. The unlicensed radio spectrum is comprised of 24 channels in the U.S., which is analogous to a 24-lane freeway. Until now, only Wi-Fi traffic traveled on that roadway, with many years spent developing technologies to ensure steady traffic flow, particularly in stadiums. Wi-Fi includes its own LBT solution, which helps assure data merges smoothly onto the freeway. It’s been proven at six Super Bowls plus countless other concerts and sporting events.

Most stadium Wi-Fi networks are already spectrum-constrained, meaning they are just managing to carry the existing load – much less new fan technologies like AR/VR. A large body of evidence demonstrates that stadiums and arenas need 20-24 fulltime-equivalent channels to make a 5 GHz system work (regardless of technology). These Wi-Fi networks are carefully optimized to eliminate all unnecessary transmissions.

Adding one or more LTE-U or LAA systems will reduce available capacity for Wi-Fi operations. As of this writing, there are no public technical measurements of deployed systems so the actual impact is unknown. If four separate unlicensed LTE networks are actually deployed, the impact will be even greater.

Number of LTE-U/LAA Networks Required. Visitors to your stadium likely utilize each of the four U.S. cellular operators: AT&T, Sprint, T-Mobile and Verizon. Therefore, to offer gigabit cellular connectivity, you’ll need to permit all four to deploy an LTE-U, or LAA, network. Because the technologies are so new, they lack a “neutral host” methodology, so each operator will require its own separate physical network and spectrum.

DAS gear under seating area at SunTrust Park

Compatibility with Existing DAS. Most stadiums and arenas have either separate antenna systems for each major cellular operator or a converged neutral-host DAS. Although LTE-U and LAA are intended to support “dual connectivity” to a separate macro base station (or “eNodeB”) on paper, the products currently being shipped are intended as co-located small cells that contain two paired LTE radios – one licensed and one unlicensed. Stadium operators should validate whether their DAS systems are compatible with an expansive LTE-U/LAA small cell deployment where the primary cell (or “PCell”) is the DAS and each PCell has dozens of secondary cells (or “SCells”) providing 5 GHz service.

Cost vs. Benefit. Of no small consideration is the added amount of equipment, and the costs, in a hybrid Wi-Fi/cellular situation. If every cellular operator requires a separate LAA/LTE-U overlay, this implies up to four full new sets of equipment must be deployed under seats or on handrails. For a 60,000-seat stadium at typical under-seat densities, it would only require about 850 Wi-Fi access points (APs). In contrast, for LAA/LTE-U stadium operators would need over 3,000 additional small cells– with each one requiring a sturdy waterproof housing, a 30-watt POE connection, Cat-6 cabling, conduit and, of course, a hole drilled in the concrete. Meaning, LTE-U/LAA small cell deployments would require essentially the same physical footprint for each carrier as Wi-Fi which is likely already installed and is inherently a neutral host technolgy.

Risk. It’s also critical to consider the corresponding risks of adding up to four cellular unlicensed LTE networks to your Wi-Fi environment. It took about seven years and three full generations of radio designs for Wi-Fi vendors to perfect high-capacity stadium systems whereas LTE-U/LAA equipment is only beginning to ship. In short, it may be wise to delay comingling Wi-Fi and LTE-U/LAA networks until unlicensed LTE equipment becomes proven in less mission-critical settings than your venue.

Chuck Lukaszewski is Vice President of Wireless Strategy & Standards at Aruba Networks, a Hewlett Packard Enterprise company. For over a decade he has engineered and deployed large-scale 802.11 networks, joining Aruba in 2007.

Chuck has built Wi-Fi systems in stadiums, seaports, rail yards, manufacturing plants and other complex RF environments, including serving as chief engineer for many stadiums ranging from 20,000 to 100,000 seats that provide live video and other online amenities. He is the author of six books and design guides including Very High Density 802.11ac Networks and Outdoor MIMO Wireless Networks.

T-Mobile steps up stadium DAS participation, ahead of 5G future

DAS gear at Kauffman Stadium. Credit: ADRF video

T-Mobile has stepped up its participation in stadium DAS deployments recently, ahead of what the wireless carrier sees as an eventual shift to 5G technologies sometime in the near future.

Recent news announcements of T-Mobile being the first carrier to participate in the new forthcoming distributed antenna system (DAS) at Wrigley Field, as well as joining DAS deployments at Texas A&M’s Kyle Field and Kansas City’s Kauffman Stadium are proof that T-Mobile is making up for lost ground in the stadium cellular deployment arena.

“It’s a catch-up play, to some degree,” said Dave Mayo, senior vice president of network technology at T-Mobile. While Mayo spent most of a recent phone interview with Mobile Sports Report talking about the promise of future 5G cellular technologies, he did acknowledge that T-Mobile was more aggressively pursuing DAS deals in the moment, to make sure T-Mobile customers could connect when they were at large public venues.

“When they get to the venue, customers expect to be able to post to Instagram and Facebook,” Mayo said. “It’s table stakes.”

In Chicago, the world champion Cubs are looking to 2018 for the arrival of their renovated Wi-Fi and DAS infrastructure. According to DAS deployer DAS Group Professionals, T-Mobile is the first of the cellular carriers to sign on to the neutral-host system.

At the Kansas City Royals’ Kauffman Stadium, the new DAS built by Advanced RF Technologies Inc. (ADRF) and Sprint in 2015 will welcome T-Mobile to the system this month, with AT&T and Verizon Wireless expected to join sometime later this year, according to ADRF. And earlier this year, Texas A&M announced a $3.5 million deal for T-Mobile to join the DAS at Texas A&M’s Kyle Field, which previously had AT&T and Verizon as participants.

Looking ahead to 5G

But even as T-Mobile announces its participation in traditional DAS deployment deals — where other carriers or third-party operators may be in charge — Mayo said venues need to rethink their cellular strategies for the coming of 5G, a still loosely-defined set of technologies that will nevertheless be much different than the current standard of 4G LTE.

“5G is going to become available in the next 2 to 3 years, so now is the time to start thinking about this,” Mayo said. With much different transmission frequencies in the millimeter wave zones, the idea is that 5G could theoretically support much higher data rates than current cellular technology. The one drawback of higher-range frequencies, that being shorter distance ranges for signals, may not be a big problem in stadiums since antennas are usually placed closer together than those in other environments.

How the DAS model will or will not translate to a 5G future is a topic already widely talked about in industry circles, and Mayo said current deployment agreements may not work well going forward.

“The whole [deployment] model has to change,” Mayo said. “And the time to start changing that is now.”